
Setup

Setup instructions
This training depends on oc , the OpenShift command-line interface.

You have the choice of either using OpenShift’s web terminal or installing oc locally.

If you prefer to not install anything on your computer, follow the instructions on the 1. Web terminal page.

The 2. Local usage chapter explains how to install oc for the respective operating system.

Also have a look at the 3. Other ways to work with OpenShift, which is, however, totally optional.

Warning
In case you’ve already installed oc, please make sure you have an up-to-date version.

- acend gmbh

1 / 108

1. Web terminal
Using OpenShift’s web terminal might be more convenient for you as it doesn’t require you to install oc

locally on your computer.

Task 1.1: Login on the web console
First of all, open your browser. Then, log in on OpenShift’s web console using the URL and credentials
provided by your trainer.

Task 1.2: Initialize terminal

In OpenShift’s web console:

1. Click on the terminal icon on the upper right
2. Choose to create a new project
3. Name your project <username>-terminal where <username> is the username given to you during this training
4. Click Start

Note
If you do change your mind, head right over to 2. Local usage.

Warning
Make sure to create a dedicated project for the web terminal!

- acend gmbh

2 / 108

Task 1.3: Verification
After the initial setup, you’re presented with a web terminal. Tools like oc are already installed and you’re
also already logged in.

You can check this by executing the following command:

You’re now ready to go!

oc whoami

Warning
The terminal project is only meant to be used for the web terminal resources. Always check that you do not
use the terminal namespace for the other labs!

- acend gmbh

3 / 108

Next steps
If you’re interested, have a look at the 3. Other ways to work with OpenShift, which is however totally
optional.

When you’re ready to go, head on over to the labs and begin with the training!

- acend gmbh

4 / 108

file:///docs/

2. Local usage
Please follow the instructions on the 2.1. cli installation page to install oc .

If you already have successfully installed oc , please verify that your installed version is current. Then, head
over to 2.2. Console login to log in.

2.1. cli installation
The oc command is the command-line interface to work with one or several OpenShift clusters.

The client is written in Go and you can run the single binary on the following operating systems:

2.1.1. Windows
2.1.2. macOS
2.1.3. Linux

- acend gmbh

5 / 108

2.2. Console login

Task 2.2.1: Login on the web console
First of all, open your browser. Then, log in on OpenShift’s web console using the URL and credentials
provided by your trainer.

Task 2.2.2: Login on the command line
In order to log in on the command line, copy the login command from the web console.

To do that, open the Web Console and click on your username that you see at the top right, then choose
Copy Login Command.

A new tab or window will open in your browser.

The page now displays a link Display token. Click on it and copy the command under Log in with this
token.

Now paste the copied command on the command line.

Task 2.2.3: Verify login
If you now execute oc version you should see something like this (your output may vary):

Client Version: 4.11.2
Kustomize Version: v4.5.4
Kubernetes Version: v1.24.0+dc5a2fd

First steps with oc
The oc binary has many subcommands. Invoke oc --help (or simply -h) to get a list of all subcommands; oc

<subcommand> --help gives you detailed help about a subcommand.

Note
You might need to log in again.

- acend gmbh

6 / 108

Next steps
If you’re interested, have a look at the 3. Other ways to work with OpenShift, which is however totally
optional.

When you’re ready to go, head on over to the labs and begin with the training!

- acend gmbh

7 / 108

file:///docs/

3. Other ways to work with OpenShift

Other ways to work with OpenShift
If you don’t have access to a running OpenShift development environment (anymore), there are several
options to get one.

OpenShift Developer Sandbox : 30 days of no-cost access to a shared cluster on OpenShift
OpenShift Local : A local OpenShift environmennt running on your machine
OKD single node installation : OKD (OpenShift community edition) single node installation

Next steps
When you’re ready to go, head on over to the labs and begin with the training!

- acend gmbh

8 / 108

https://developers.redhat.com/developer-sandbox
https://developers.redhat.com/products/openshift-local/overview
https://docs.okd.io/latest/installing/installing_sno/install-sno-preparing-to-install-sno.html
file:///docs/

Labs
The purpose of these labs is to convey OpenShift basics by providing hands-on tasks for people. OpenShift
will allow you to deploy and deliver your software packaged as containers in an easy, straightforward way.

Goals of these labs:

Help you get started with this modern technology
Explain the basic concepts to you
Show you how to deploy your first applications on Kubernetes

Additional Docs
OpenShift Docs

Additional Tutorials
OpenShift Interactive Learning Portal

- acend gmbh

9 / 108

https://docs.openshift.com/
https://learn.openshift.com/

1. Introduction
In this lab, we will introduce the core concepts of OpenShift.

All explanations and resources used in this lab give only a quick and not detailed overview. As OpenShift is
based on Kubernetes, its concepts also apply to OpenShift which you can find in the official Kubernetes
documentation .

Core concepts
With the open source software OpenShift, you get a platform to build and deploy your application in a
container as well as operate it at the same time. Therefore, OpenShift is also called a Container Platform, or
the term Container-as-a-Service (CaaS) is used.

Depending on the configuration the term Platform-as-a-Service (PaaS) works as well.

Container engine
OpenShift’s underlying container engine is CRI-O . Earlier releases used Docker .

Docker was originally created to help developers test their applications in their continuous integration
environments. Nowadays, system admins also use it. CRI-O doesn’t exist as long as Docker does. It is a
“lightweight container runtime for Kubernetes” and is fully OCI-compliant .

Overview
OpenShift basically consists of control plane and worker nodes.

- acend gmbh

10 / 108

https://kubernetes.io/docs/concepts/
https://cri-o.io/
https://www.docker.com/
https://github.com/opencontainers/runtime-spec

Control plane and worker nodes
The control plane components are the API server, the scheduler and the controller manager. The API server
itself represents the management interface. The scheduler and the controller manager decide how
applications should be deployed on the cluster. Additionally, the state and configuration of the cluster itself
are controlled in the control plane components.

Worker nodes are also known as compute nodes, application nodes or minions, and are responsible for
running the container workload (applications). The control plane for the worker nodes is implemented in the
control plane components. The hosts running these components were historically called masters.

Containers and images
The smallest entities in Kubernetes and OpenShift are Pods, which resemble your containerized application.

Using container virtualization, processes on a Linux system can be isolated up to a level where only the
predefined resources are available. Several containers can run on the same system without “seeing” each
other (files, process IDs, network). One container should contain one application (web server, database,
cache, etc.). It should be at least one part of the application, e.g. when running a multi-service middleware.
In a container itself any process can be started that runs natively on your operating system.

Containers are based on images. An image represents the file tree, which includes the binary, shared
libraries and other files which are needed to run your application.

A container image is typically built from a Containerfile or Dockerfile , which is a text file filled with
instructions. The end result is a hierarchically layered binary construct. Depending on the backend, the
implementation uses overlay or copy-on-write (COW) mechanisms to represent the image.

Layer example for a Tomcat application:

1. Base image (CentOS 7)
2. Install Java
3. Install Tomcat
4. Install App

The pre-built images under version control can be saved in an image registry and can then be used by the
container platform.

Namespaces and Projects
Namespaces in Kubernetes represent a logical segregation of unique names for entities (Pods, Services,
Deployments, ConfigMaps, etc.).

In OpenShift, users do not directly create Namespaces, they create Projects. A Project is a Namespace with
additional annotations.

Permissions and roles can be bound on a per-project basis. This way, a user can control his own resources
inside a Project.

Note
OpenShift’s concept of a Project does not coincide with Rancher’s.

Note
Some resources are valid cluster-wise and cannot be set and controlled on a namespace basis.

- acend gmbh

11 / 108

Pods
A Pod is the smallest entity in Kubernetes and OpenShift.

It represents one instance of your running application process. The Pod consists of at least two containers,
one for your application itself and another one as part of the Kubernetes design, to keep the network
namespace. The so-called infrastructure container (or pause container) is therefore automatically added by
Kubernetes.

The application ports from inside the Pod are exposed via Services.

Services
A service represents a static endpoint for your application in the Pod. As a Pod and its IP address typically
are considered dynamic, the IP address of the Service does not change when changing the application
inside the Pod. If you scale up your Pods, you have an automatic internal load balancing towards all Pod IP
addresses.

There are different kinds of Services:

ClusterIP : Default virtual IP address range
NodePort : Same as ClusterIP plus open ports on the nodes
LoadBalancer : An external load balancer is created, only works in cloud environments, e.g. AWS ELB
ExternalName : A DNS entry is created, also only works in cloud environments

A Service is unique inside a Namespace.

Deployment
Have a look at the official documentation .

Volume
Have a look at the official documentation .

Job
Have a look at the official documentation .

History
There is a official Kubernetes Documentary available on Youtube.

Kubernetes: The Documentary [PART 1]
Kubernetes: The Documentary [PART 2]

Inspired by the open source success of Docker in 2013 and seeing the need for innovation in the area of
large-scale cloud computing, a handful of forward-thinking Google engineers set to work on the container
orchestrator that would come to be known as Kubernetes– this new tool would forever change the way the
internet is built.

These engineers overcome technical challenges, resistance to open source from within, naysayers, and
intense competition from other big players in the industry.

Most engineers know about “The Container Orchestrator Wars’’ but most people would not be able to

- acend gmbh

12 / 108

https://docs.openshift.com/container-platform/latest/applications/deployments/what-deployments-are.html
https://docs.openshift.com/container-platform/latest/nodes/containers/nodes-containers-volumes.html
https://docs.openshift.com/container-platform/latest/nodes/jobs/nodes-nodes-jobs.html
https://www.youtube.com/watch?v=BE77h7dmoQU
https://www.youtube.com/watch?v=318elIq37PE

explain exactly what happened, and why it was Kubernetes that ultimately came out on top.

There is no topic more relevant to the current open source landscape. This film captures the story directly
from the people who lived it, featuring interviews with prominent engineers from Google, Red Hat, Twitter
and others.

1.1. YAML
YAML Ain’t Markup Language (YAML) is a human-readable data-serialization language. YAML is not a
programming language. It is mostly used for storing configuration information.

As you will see a lot of YAML in our Kubernetes basics course, we want to make sure you can read and write
YAML. If you are not yet familiar with YAML, this introduction is waiting for you. Otherwise, feel free to skip it
or come back later if you meet some less familiar YAML stuff.

This introduction is based on the YAML Tutorial from cloudbees.com .

For more information and the full spec have a look at https://yaml.org/

A simple file
Let’s look at a YAML file for an overview:

The file starts with three dashes. These dashes indicate the start of a new YAML document. YAML supports
multiple documents, and compliant parsers will recognize each set of dashes as the beginning of a new one.

Then we see the construct that makes up most of a typical YAML document: a key-value pair. foo is a key
that points to a string value: foo is not bar

YAML knows four different data types:

foo & bar are strings.
pi is a floating-point number

Note
Data serialization is the process of converting data objects, or object states present in complex data
structures, into a stream of bytes for storage, transfer, and distribution in a form that can allow recovery of
its original structure.

foo: "foo is not bar"
bar: "bar is not foo"
pi: 3.14159
awesome: true
kubernetes-birth-year: 2015
cloud-native:
 - scalable
 - dynamic
 - cloud
 - container
kubernetes:
 version: "1.22.0"
 deployed: true
 applications:
 - name: "My App"
 location: "public cloud"

- acend gmbh

13 / 108

https://www.cloudbees.com/blog/yaml-tutorial-everything-you-need-get-started
https://yaml.org/

awesome is a boolean
kubernetes-birth-year is an integer

You can enclose strings in single or double-quotes or no quotes at all. YAML recognizes unquoted numerals
as integers or floating point.

The cloud-native item is an array with four elements, each denoted by an opening dash. The elements in
cloud-native are indented with two spaces. Indentation is how YAML denotes nesting. The number of spaces

can vary from file to file, but tabs are not allowed.

Finally, kubernetes is a dictionary that contains a string version , a boolean deployed and an array applications

where the item of the array contains two strings .

YAML supports nesting of key-values, and mixing types.

Indentation and Whitespace
Whitespace is part of YAML’s formatting. Unless otherwise indicated, newlines indicate the end of a field.
You structure a YAML document with indentation. The indentation level can be one or more spaces. The
specification forbids tabs because tools treat them differently.

Comments
Comments begin with a pound sign. They can appear after a document value or take up an entire line.

YAML data types
Values in YAML’s key-value pairs are scalar. They act like the scalar types in languages like Perl, Javascript,
and Python. It’s usually good enough to enclose strings in quotes, leave numbers unquoted, and let the
parser figure it out. But that’s only the tip of the iceberg. YAML is capable of a great deal more.

Key-Value Pairs and Dictionaries
The key-value is YAML’s basic building block. Every item in a YAML document is a member of at least one
dictionary. The key is always a string. The value is a scalar so that it can be any datatype. So, as we’ve
already seen, the value can be a string, a number, or another dictionary.

Numeric types
YAML recognizes numeric types. We saw floating point and integers above. YAML supports several other
numeric types. An integer can be decimal, hexadecimal, or octal.

YAML supports both fixed and exponential floating point numbers.

This is a full line comment
foo: bar # this is a comment, too

foo: 12345
bar: 0x12d4
plop: 023332

- acend gmbh

14 / 108

Finally, we can represent not-a-number (NAN) or infinity.

Foo is infinity. Bar is negative infinity, and plop is NAN.

Strings
YAML strings are Unicode. In most situations, you don’t have to specify them in quotes.

But if we want escape sequences handled, we need to use double quotes.

YAML processes the first value as ending with a carriage return and linefeed. Since the second value is not
quoted, YAML treats the \n as two characters.

YAML will not escape strings with single quotes, but the single quotes do avoid having string contents
interpreted as document formatting. String values can span more than one line. With the fold (greater than)
character, you can specify a string in a block.

But it’s interpreted without the newlines: bar : this is not a normal string it spans more than one line see?

The block (pipe) character has a similar function, but YAML interprets the field exactly as is.

foo: 1230.15
bar: 12.3015e+05

foo: .inf
bar: -.Inf
plop: .NAN

foo: this is a normal string

foo: "this is not a normal string\n"
bar: this is not a normal string\n

foo: this is not a normal string
bar: this is not a normal string\n

bar: >
 this is not a normal string it
 spans more than
 one line
 see?

- acend gmbh

15 / 108

So, we see the newlines where they are in the document.

Nulls
You enter nulls with a tilde or the unquoted null string literal.

Booleans
YAML indicates boolean values with the keywords True, On and Yes for true. False is indicated with False,
Off, or No.

Arrays
You can specify arrays or lists on a single line.

Or, you can put them on multiple lines.

bar: |
 this is not a normal string it
 spans more than
 one line
 see?

bar : this is not a normal string it
spans more than
one line
see?

foo: ~
bar: null

foo: True
bar: False
light: On
TV: Off

items: [1, 2, 3, 4, 5]
names: ["one", "two", "three", "four"]

- acend gmbh

16 / 108

The multiple line format is useful for lists that contain complex objects instead of scalars.

An array can contain any valid YAML value. The values in a list do not have to be the same type.

Dictionaries
We covered dictionaries above, but there’s more to them. Like arrays, you can put dictionaries inline. We
saw this format above.

We’ve seen them span lines before.

And, of course, they can be nested and hold any value.

items:
 - 1
 - 2
 - 3
 - 4
 - 5
names:
 - "one"
 - "two"
 - "three"
 - "four"

items:
 - things:
 thing1: huey
 things2: dewey
 thing3: louie
 - other things:
 key: value

foo: { thing1: huey, thing2: louie, thing3: dewey }

foo: bar
bar: foo

foo:
 bar:
 - bar
 - rab
 - plop

- acend gmbh

17 / 108

2. First steps
In this lab, we will interact with the OpenShift cluster for the first time.

Projects
As a first step on the cluster, we are going to create a new Project.

A Project is a logical design used in OpenShift to organize and separate your applications, Deployments,
Pods, Ingresses, Services, etc. on a top-level basis. Authorized users inside a Project are able to manage
those resources. Project names have to be unique in your cluster.

Task 2.2: Create a Project
Create a new Project in the lab environment. The oc help output can help you figure out the right command.

Solution
To create a new Project on your cluster use the following command:

Task 2.3: Discover the OpenShift web console
Discover the different menu entries in the two views, the Developer and the Administrator view.

Display all existing Pods in the previously created Project with oc (there shouldn’t yet be any):

Warning
Please make sure you completed Setup before you continue with this lab.

Note
Please choose an identifying name for your Project, e.g. your initials or name as a prefix. We are going to
use <namespace> as a placeholder for your created Project.

oc new-project <namespace>

Note
In order to declare what Project to use, you have several possibilities:

Some prefer to explicitly select the Project for each oc command by adding --namespace <namespace> or -n

<namespace>

By using the following command, you can switch into another Project instead of specifying it for each
oc command

oc project <namespace>

- acend gmbh

18 / 108

oc get pod --namespace <namespace>

Note
With the command oc get you can display all kinds of resources.

- acend gmbh

19 / 108

3. Deploying a container image
In this lab, we are going to deploy our first container image and look at the concepts of Pods, Services, and
Deployments.

Task 3.1: Start and stop a single Pod
After we’ve familiarized ourselves with the platform, we are going to have a look at deploying a pre-built
container image from Quay.io or any other public container registry.

In OpenShift we have used the <project> identifier to select the correct project. Please use the same
identifier in the context <namespace> to do the same for all upcoming labs. Ask your trainer if you want more
information on that.

First, we are going to directly start a new Pod. For this we have to define our Kubernetes Pod resource
definition. Create a new file pod_awesome-app.yaml with the content below.

Now we can apply this with:

Note
Alternatively, you can create the Pod definition on the web console. Simply click on the plus sign button
on the upper right (1), make sure you’ve selected the correct Project (2) and paste the content.

apiVersion: v1
kind: Pod
metadata:
 name: awesome-app
spec:
 containers:
 - image: quay.io/acend/example-web-go:latest
 imagePullPolicy: Always
 name: awesome-app
 resources:
 limits:
 cpu: 20m
 memory: 32Mi
 requests:
 cpu: 10m
 memory: 16Mi

Note
If you used the web console to import the Pod’s YAML definition, don’t execute the following command.

- acend gmbh

20 / 108

The output should be:

pod/awesome-app created

Use oc get pods --namespace <namespace> in order to show the running Pod:

Which gives you an output similar to this:

NAME READY STATUS RESTARTS AGE
awesome-app 1/1 Running 0 1m24s

Have a look at your awesome-app Pod inside the OpenShift web console.

Now delete the newly created Pod:

Task 3.2: Create a Deployment
In some use cases it can make sense to start a single Pod. But this has its downsides and is not really a
common practice. Let’s look at another concept which is tightly coupled with the Pod: the so-called
Deployment. A Deployment ensures that a Pod is monitored and checks that the number of running Pods
corresponds to the number of requested Pods.

To create a new Deployment we first define our Deployment in a new file deployment_example-web-go.yaml with
the content below.

oc apply -f pod_awesome-app.yaml --namespace <namespace>

oc get pods --namespace <namespace>

oc delete pod awesome-app --namespace <namespace>

Note
You could, of course, again import the YAML on the web console as described above.

- acend gmbh

21 / 108

And with this we create our Deployment inside our already created namespace:

The output should be:

deployment.apps/example-web-go created

We’re using a simple sample application written in Go, which you can find built as an image on Quay.io or as
source code on GitHub .

OpenShift creates the defined and necessary resources, pulls the container image (in this case from
Quay.io) and deploys the Pod.

Use the command oc get with the -w parameter in order to get the requested resources and afterward
watch for changes.

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: example-web-go
 name: example-web-go
spec:
 replicas: 1
 selector:
 matchLabels:
 app: example-web-go
 template:
 metadata:
 labels:
 app: example-web-go
 spec:
 containers:
 - image: quay.io/acend/example-web-go:latest
 name: example-web-go
 resources:
 requests:
 cpu: 10m
 memory: 16Mi
 limits:
 cpu: 20m
 memory: 32Mi

Note
If you used the web console to import the Deployment’s YAML definition, don’t execute the following
command.

oc apply -f deployment_example-web-go.yaml --namespace <namespace>

Note
The oc get -w command will never end unless you terminate it with CTRL-c.

oc get pods -w --namespace <namespace>

- acend gmbh

22 / 108

https://quay.io/repository/acend/example-web-go
https://github.com/acend/awesome-apps

This process can last for some time depending on your internet connection and if the image is already
available locally.

Creating Kubernetes resources
There are two fundamentally different ways to create Kubernetes resources. You’ve already seen one way:
Writing the resource’s definition in YAML (or JSON) and then applying it on the cluster using oc apply .

The other variant is to use helper commands. These are more straightforward: You don’t have to copy a
YAML definition from somewhere else and then adapt it. However, the result is the same. The helper
commands just simplify the process of creating the YAML definitions.

As an example, let’s look at creating above deployment, this time using a helper command instead. If you
already created the Deployment using above YAML definition, you don’t have to execute this command:

It’s important to know that these helper commands exist. However, in a world where GitOps concepts have
an ever-increasing presence, the idea is not to constantly create these resources with helper commands.
Instead, we save the resources’ YAML definitions in a Git repository and leave the creation and management
of those resources to a tool.

Task 3.3: Viewing the created resources
Display the created Deployment using the following command:

A Deployment defines the following facts:

Update strategy: How application updates should be executed and how the Pods are exchanged
Containers

Which image should be deployed
Environment configuration for Pods
ImagePullPolicy

Note
Instead of using the -w parameter you can also use the watch command which should be available on most
Linux distributions:

watch oc get pods --namespace <namespace>

Note
If you want to create your own container images and use them with OpenShift, you definitely should have a
look at these best practices and apply them. This image creation guide may be for OpenShift, however it
also applies to Kubernetes and other container platforms.

oc create deployment example-web-go --image=quay.io/acend/example-web-go:latest --namespace <namespace>

oc get deployments --namespace <namespace>

- acend gmbh

23 / 108

https://docs.openshift.com/container-platform/latest/openshift_images/create-images.html
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

The number of Pods/Replicas that should be deployed

By using the -o (or --output) parameter we get a lot more information about the deployment itself. You can
choose between YAML and JSON formatting by indicating -o yaml or -o json . In this training we are going to
use YAML, but please feel free to replace yaml with json if you prefer.

After the image has been pulled, OpenShift deploys a Pod according to the Deployment:

which gives you an output similar to this:

NAME READY STATUS RESTARTS AGE
example-web-go-69b658f647-xnm94 1/1 Running 0 39s

The Deployment defines that one replica should be deployed — which is running as we can see in the
output. This Pod is not yet reachable from outside the cluster.

Task 3.4: Verify the Deployment in the OpenShift web
console
Try to display the logs from the example application in the OpenShift web console.

Task 3.5: Build the image yourself
Up until now, we’ve used pre-built images from Quay.io. OpenShift offers the ability to build images on the
cluster itself using different strategies :

Docker build strategy
Source-to-image build strategy
Custom build strategy
Pipeline build strategy

We are going to use the Docker build strategy. It expects:

[…] a repository with a Dockerfile and all required artifacts in it to produce a runnable image.

All of these requirements are already fulfilled in the source code repository on GitHub , so let’s build the
image!

First we clean up the already existing Deployment:

oc get deployment example-web-go -o yaml --namespace <namespace>

oc get pods --namespace <namespace>

Note
Have a look at OpenShift’s documentation to learn more about the other available build strategies.

- acend gmbh

24 / 108

https://docs.openshift.com/container-platform/latest/cicd/builds/understanding-image-builds.html
https://github.com/acend/awesome-apps/tree/main/go
https://docs.openshift.com/container-platform/latest/cicd/builds/understanding-image-builds.html

We are now ready to create the build and deployment, all in one command:

Let’s watch the image’s build process:

The message Push successful signifies the image’s successful build and push to OpenShift’s internal image.

In the above command you discovered a new resource type bc which is the abbreviation for BuildConfig. A
BuildConfig defines how a container image has to be built.

A Build resource represents the build process itself based upon the BuildConfig’s definition. A build takes
place in a Pod on OpenShift, so instead of referencing the BuildConfig in our oc logs command, we could
have used the build Pod’s log output. However, referencing the BuildConfig has the advantage that it can be
reused each time a build is run. A build Pod changes its name with every build.

Have a look at the new Deployment created by the oc new-app command:

It looks the same as before with the only essential exception that it uses the image we just built instead of
the pre-built image from Quay.io:

 ...
 spec:
 containers:
 - image: image-registry.openshift-image-registry.svc:5000/<namespace>/awesome-app@sha256:4cd671273a837453464f7264
afe845b299297ebe032f940fd005cf9c40d1e76c
 ...

oc delete deployment example-web-go --namespace <namespace>

oc new-app --name example-web-go --labels app=example-web-go --context-dir go/ --strategy docker https://github.com/ace
nd/awesome-apps.git --namespace <namespace>

oc logs bc/example-web-go --follow --namespace <namespace>

oc get deployment example-web-go -o yaml --namespace <namespace>

- acend gmbh

25 / 108

4. Exposing a service
In this lab, we are going to make the freshly deployed application from the last lab available online.

Task 4.1: Create a ClusterIP Service
The command oc apply -f deployment_example-web-go.yaml from the last lab creates a Deployment but no Service.
A OpenShift Service is an abstract way to expose an application running on a set of Pods as a network
service. For some parts of your application (for example, frontends) you may want to expose a Service to an
external IP address which is outside your cluster.

OpenShift ServiceTypes allow you to specify what kind of Service you want. The default is ClusterIP .

Type values and their behaviors are:

ClusterIP : Exposes the Service on a cluster-internal IP. Choosing this value only makes the Service
reachable from within the cluster. This is the default ServiceType.

NodePort : Exposes the Service on each Node’s IP at a static port (the NodePort). A ClusterIP Service, to
which the NodePort Service routes, is automatically created. You’ll be able to contact the NodePort
Service from outside the cluster, by requesting <NodeIP>:<NodePort>.

LoadBalancer : Exposes the Service externally using a cloud provider’s load balancer. NodePort and
ClusterIP Services, to which the external load balancer routes, are automatically created.

ExternalName : Maps the Service to the contents of the externalName field (e.g. foo.bar.example.com), by
returning a CNAME record with its value. No proxying of any kind is set up.

You can also use Ingress to expose your Service. Ingress is not a Service type, but it acts as the entry point
for your cluster. Ingress exposes HTTP and HTTPS routes from outside the cluster to services within the
cluster. Traffic routing is controlled by rules defined on the Route resource. A Route may be configured to
give Services externally reachable URLs, load balance traffic, terminate SSL / TLS, and offer name-based
virtual hosting. An Ingress controller is responsible for fulfilling the route, usually with a load balancer,
though it may also configure your edge router or additional frontends to help handle the traffic.

In order to create a Route, we first need to create a Service of type ClusterIP .

To create the Service add a new file svc-web-go.yaml with the following content:

And then apply the file with:

apiVersion: v1
kind: Service
metadata:
 labels:
 app: example-web-go
 name: example-web-go
spec:
 ports:
 - port: 5000
 protocol: TCP
 targetPort: 5000
 selector:
 app: example-web-go
 type: ClusterIP

- acend gmbh

26 / 108

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types

There is also am imperative command to create a service and expose your application which can be used
instead of the yaml file with the oc apply ... command

oc expose deployment example-web-go --type=ClusterIP --name=example-web-go --port=5000 --target-port=5000 --namespace <
namespace>

You will get the error message reading Error from server (AlreadyExists): services "example-web-go" already exists

here. This is because the oc new-app command you executed during lab 3 already created a service. This is
the default behavior of oc new-app while oc create deployment doesn’t have this functionality.

As a consequence, the oc expose command above doesn’t add anything new but it demonstrates how to
easily create a service based on a deployment.

Let’s have a more detailed look at our Service:

Which gives you an output similar to this:

By executing the following command:

You get additional information:

oc apply -f svc-web-go.yaml --namespace <namespace>

oc get services --namespace <namespace>

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
example-web-go ClusterIP 10.43.91.62 <none> 5000/TCP

Note
Service IP (CLUSTER-IP) addresses stay the same for the duration of the Service’s lifespan.

oc get service example-web-go -o yaml --namespace <namespace>

- acend gmbh

27 / 108

apiVersion: v1
kind: Service
metadata:
 ...
 labels:
 app: example-web-go
 managedFields:
 ...
 name: example-web-go
 namespace: <namespace>
 ...
spec:
 clusterIP: 10.43.91.62
 externalTrafficPolicy: Cluster
 ports:
 - port: 5000
 protocol: TCP
 targetPort: 5000
 selector:
 app: example-web-go
 sessionAffinity: None
 type: ClusterIP
status:
 loadBalancer: {}

The Service’s selector defines which Pods are being used as Endpoints. This happens based on labels. Look
at the configuration of Service and Pod in order to find out what maps to what:

...
 selector:
 app: example-web-go
...

With the following command you get details from the Pod:

Let’s have a look at the label section of the Pod and verify that the Service selector matches the Pod’s
labels:

...
 labels:
 app: example-web-go
...

This link between Service and Pod can also be displayed in an easier fashion with the oc describe command:

oc get service example-web-go -o yaml --namespace <namespace>

Note
First, get all Pod names from your namespace with (oc get pods --namespace <namespace>) and then replace
<pod> in the following command. If you have installed and configured the bash completion, you can also
press the TAB key for autocompletion of the Pod’s name.

oc get pod <pod> -o yaml --namespace <namespace>

- acend gmbh

28 / 108

Name: example-web-go
Namespace: example-ns
Labels: app=example-web-go
Annotations: <none>
Selector: app=example-web-go
Type: ClusterIP
IP: 10.39.240.212
Port: <unset> 5000/TCP
TargetPort: 5000/TCP
Endpoints: 10.36.0.8:5000
Session Affinity: None
External Traffic Policy: Cluster
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------

The Endpoints show the IP addresses of all currently matched Pods.

Task 4.2: Expose the Service
With the ClusterIP Service ready, we can now create the Route resource.

The output should be:

route.route.openshift.io/example-web-go created

We are now able to access our app via the freshly created route at https://example-web-go-<namespace>.<appdomain>

Find your actual app URL by looking at your route (HOST/PORT):

Browse to the URL and check the output of your app.

oc describe service example-web-go --namespace <namespace>

oc create route edge example-web-go --service example-web-go --namespace <namespace>

oc get route --namespace <namespace>

Note
If the site doesn’t load, check if you are using the http:// , not the https:// protocol, which might be the
default in your browser.

Note
The <appdomain> is the default domain under which your applications will be accessible and is provided by
your trainer. You can also use oc get route example-web-go to see the exact value of the exposed route.

- acend gmbh

29 / 108

Task 4.4: For fast learners
Have a closer look at the resources created in your namespace <namespace> with the following commands and
try to understand them:

oc describe namespace <namespace>

oc get all --namespace <namespace>

oc describe <resource> <name> --namespace <namespace>

oc get <resource> <name> -o yaml --namespace <namespace>

- acend gmbh

30 / 108

5. Scaling
In this lab, we are going to show you how to scale applications on OpenShift. Furthermore, we show you how
OpenShift makes sure that the number of requested Pods is up and running and how an application can tell
the platform that it is ready to receive requests.

Task 5.1: Scale the example application
Create a new Deployment in your Namespace. So again, lets define the Deployment using YAML in a file
deployment_example-web-app.yaml with the following content:

and then apply with:

If we want to scale our example application, we have to tell the Deployment that we want to have three
running replicas instead of one. Let’s have a closer look at the existing ReplicaSet:

Note
This lab does not depend on previous labs. You can start with an empty Namespace.

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: example-web-app
 name: example-web-app
spec:
 replicas: 1
 selector:
 matchLabels:
 app: example-web-app
 strategy:
 rollingUpdate:
 maxSurge: 25%
 maxUnavailable: 0
 type: RollingUpdate
 template:
 metadata:
 labels:
 app: example-web-app
 spec:
 containers:
 - image: quay.io/acend/example-web-python:latest
 name: example-web-app
 resources:
 limits:
 cpu: 100m
 memory: 128Mi
 requests:
 cpu: 50m
 memory: 128Mi

oc apply -f deployment_example-web-app.yaml --namespace <namespace>

oc get replicasets --namespace <namespace>

- acend gmbh

31 / 108

Which will give you an output similar to this:

NAME DESIRED CURRENT READY AGE
example-web-app-86d9d584f8 1 1 1 110s

Or for even more details:

The ReplicaSet shows how many instances of a Pod are desired, current and ready.

Now we scale our application to three replicas:

Check the number of desired, current and ready replicas:

NAME DESIRED CURRENT READY AGE
example-web-app-86d9d584f8 3 3 3 4m33s

Look at how many Pods there are:

Which gives you an output similar to this:

NAME READY STATUS RESTARTS AGE
example-web-app-86d9d584f8-7vjcj 1/1 Running 0 5m2s
example-web-app-86d9d584f8-hbvlv 1/1 Running 0 31s
example-web-app-86d9d584f8-qg499 1/1 Running 0 31s

As we changed the number of replicas with the oc scale deployment command, the example-web-app Deployment
now differs from your local deployment_example-web-app.yaml file. Change your local deployment_example-web-app.yaml

file to match the current number of replicas and update the value replicas to 3 :

oc get replicaset <replicaset> -o yaml --namespace <namespace>

oc scale deployment example-web-app --replicas=3 --namespace <namespace>

oc get replicasets --namespace <namespace>

oc get pods --namespace <namespace>

Note
OpenShift supports horizontal and vertical autoscaling .

- acend gmbh

32 / 108

https://docs.openshift.com/container-platform/latest/nodes/pods/nodes-pods-autoscaling.html
https://docs.openshift.com/container-platform/latest/nodes/pods/nodes-pods-vertical-autoscaler.html

Check for uninterruptible Deployments
Now we expose our application to the internet by creating a service and a route.

First the service:

Then the route:

Let’s look at our Service. We should see all three corresponding Endpoints:

Name: example-web-app
Namespace: acend-test
Labels: app=example-web-app
Annotations: <none>
Selector: app=example-web-app
Type: ClusterIP
IP Family Policy: SingleStack
IP Families: IPv4
IP: 172.30.89.44
IPs: 172.30.89.44
Port: <unset> 5000/TCP
TargetPort: 5000/TCP
Endpoints: 10.125.4.70:5000,10.126.4.137:5000,10.126.4.138:5000
Session Affinity: None
Events: <none>

Scaling of Pods is fast as OpenShift simply creates new containers.

You can check the availability of your Service while you scale the number of replicas up and down in your
browser: http://<route hostname> .

[...]
metadata:
 labels:
 app: example-web-app
 name: example-web-app
spec:
 replicas: 3
 selector:
 matchLabels:
 app: example-web-app
[...]

oc expose deployment example-web-app --name="example-web-app" --port=5000 --namespace <namespace>

oc create route edge example-web-app --port 5000 --service example-web-app --namespace <namespace>

oc describe service example-web-app --namespace <namespace>

Note
You can find out the route’s hostname by looking at the output of oc get route .

- acend gmbh

33 / 108

Now, execute the corresponding loop command for your operating system in another console.

Linux:

Windows PowerShell:

Scale from 3 replicas to 1. The output shows which Pod is still alive and is responding to requests:

example-web-app-86d9d584f8-7vjcj TIME: 17:33:07,289
example-web-app-86d9d584f8-7vjcj TIME: 17:33:08,357
example-web-app-86d9d584f8-hbvlv TIME: 17:33:09,423
example-web-app-86d9d584f8-7vjcj TIME: 17:33:10,494
example-web-app-86d9d584f8-qg499 TIME: 17:33:11,559
example-web-app-86d9d584f8-hbvlv TIME: 17:33:12,629
example-web-app-86d9d584f8-qg499 TIME: 17:33:13,695
example-web-app-86d9d584f8-hbvlv TIME: 17:33:14,771
example-web-app-86d9d584f8-hbvlv TIME: 17:33:15,840
example-web-app-86d9d584f8-7vjcj TIME: 17:33:16,912
example-web-app-86d9d584f8-7vjcj TIME: 17:33:17,980
example-web-app-86d9d584f8-7vjcj TIME: 17:33:19,051
example-web-app-86d9d584f8-7vjcj TIME: 17:33:20,119
example-web-app-86d9d584f8-7vjcj TIME: 17:33:21,182
example-web-app-86d9d584f8-7vjcj TIME: 17:33:22,248
example-web-app-86d9d584f8-7vjcj TIME: 17:33:23,313
example-web-app-86d9d584f8-7vjcj TIME: 17:33:24,377
example-web-app-86d9d584f8-7vjcj TIME: 17:33:25,445
example-web-app-86d9d584f8-7vjcj TIME: 17:33:26,513

The requests get distributed amongst the three Pods. As soon as you scale down to one Pod, there should
be only one remaining Pod that responds.

Let’s make another test: What happens if you start a new Deployment while our request generator is still
running?

During a short period we won’t get a response:

URL=$(oc get routes example-web-app -o go-template="{{ .spec.host }}" --namespace <namespace>)
while true; do sleep 1; curl -s https://${URL}/pod/; date "+ TIME: %H:%M:%S,%3N"; done

while(1) {
 Start-Sleep -s 1
 Invoke-RestMethod https://<URL>/pod/
 Get-Date -Uformat "+ TIME: %H:%M:%S,%3N"
}

oc rollout restart deployment example-web-app --namespace <namespace>

- acend gmbh

34 / 108

example-web-app-86d9d584f8-7vjcj TIME: 17:37:24,121
example-web-app-86d9d584f8-7vjcj TIME: 17:37:25,189
example-web-app-86d9d584f8-7vjcj TIME: 17:37:26,262
example-web-app-86d9d584f8-7vjcj TIME: 17:37:27,328
example-web-app-86d9d584f8-7vjcj TIME: 17:37:28,395
example-web-app-86d9d584f8-7vjcj TIME: 17:37:29,459
example-web-app-86d9d584f8-7vjcj TIME: 17:37:30,531
example-web-app-86d9d584f8-7vjcj TIME: 17:37:31,596
example-web-app-86d9d584f8-7vjcj TIME: 17:37:32,662
no answer
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:33,729
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:34,794
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:35,862
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:36,929
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:37,995
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:39,060
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:40,118
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:41,187

In our example, we use a very lightweight Pod. If we had used a more heavyweight Pod that needed a
longer time to respond to requests, we would of course see a larger gap. An example for this would be a
Java application with a startup time of 30 seconds:

example-spring-boot-2-73aln TIME: 16:48:25,251
example-spring-boot-2-73aln TIME: 16:48:26,305
example-spring-boot-2-73aln TIME: 16:48:27,400
example-spring-boot-2-73aln TIME: 16:48:28,463
example-spring-boot-2-73aln TIME: 16:48:29,507
<html><body><h1>503 Service Unavailable</h1>
No server is available to handle this request.
</body></html>
 TIME: 16:48:33,562
<html><body><h1>503 Service Unavailable</h1>
No server is available to handle this request.
</body></html>
 TIME: 16:48:34,601
 ...
example-spring-boot-3-tjdkj TIME: 16:49:20,114
example-spring-boot-3-tjdkj TIME: 16:49:21,181
example-spring-boot-3-tjdkj TIME: 16:49:22,231

It is even possible that the Service gets down, and the routing layer responds with the status code 503 as
can be seen in the example output above.

In the following chapter we are going to look at how a Service can be configured to be highly available.

Uninterruptible Deployments
The rolling update strategy makes it possible to deploy Pods without interruption. The rolling update
strategy means that the new version of an application gets deployed and started. As soon as the application
says it is ready, OpenShift forwards requests to the new instead of the old version of the Pod, and the old
Pod gets terminated.

Additionally, container health checks help OpenShift to precisely determine what state the application is in.

Basically, there are two different kinds of checks that can be implemented:

Liveness probes are used to find out if an application is still running
Readiness probes tell us if the application is ready to receive requests (which is especially relevant for
the above-mentioned rolling updates)

These probes can be implemented as HTTP checks, container execution checks (the execution of a
command or script inside a container) or TCP socket checks.

- acend gmbh

35 / 108

https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

In our example, we want the application to tell OpenShift that it is ready for requests with an appropriate
readiness probe.

Our example application has a health check context named health: http://${URL}/health

Task 5.2: Availability during deployment
Define the readiness probe on the Deployment using the following command:

The command above results in the following readinessProbe snippet being inserted into the Deployment:

We are now going to verify that a redeployment of the application does not lead to an interruption.

Set up the loop again to periodically check the application’s response (you don’t have to set the $URL

variable again if it is still defined):

Windows PowerShell:

Restart your Deployment with:

oc set probe deploy/example-web-app --readiness --get-url=http://:5000/health --initial-delay-seconds=10 --timeout-seco
nds=1 --namespace <namespace>

...
containers:
 - image: quay.io/acend/example-web-python:latest
 imagePullPolicy: Always
 name: example-web-app
 readinessProbe:
 httpGet:
 path: /health
 port: 5000
 scheme: HTTP
 initialDelaySeconds: 10
 timeoutSeconds: 1
...

URL=$(oc get routes example-web-app -o go-template="{{ .spec.host }}" --namespace <namespace>)
while true; do sleep 1; curl -s https://${URL}/pod/; date "+ TIME: %H:%M:%S,%3N"; done

while(1) {
 Start-Sleep -s 1
 Invoke-RestMethod https://<URL>/pod/
 Get-Date -Uformat "+ TIME: %H:%M:%S,%3N"
}

oc rollout restart deployment example-web-app --namespace <namespace>

- acend gmbh

36 / 108

Self-healing
Via the Deployment definition we told OpenShift how many replicas we want. So what happens if we simply
delete a Pod?

Look for a running Pod (status RUNNING) that you can bear to kill via oc get pods .

Show all Pods and watch for changes:

Now delete a Pod (in another terminal) with the following command:

Observe how OpenShift instantly creates a new Pod in order to fulfill the desired number of running
instances.

oc get pods -w --namespace <namespace>

oc delete pod <pod> --namespace <namespace>

- acend gmbh

37 / 108

6. Troubleshooting
This lab helps you troubleshoot your application and shows you some tools to make troubleshooting easier.

Logging into a container
Running containers should be treated as immutable infrastructure and should therefore not be modified.
However, there are some use cases in which you have to log into your running container. Debugging and
analyzing is one example for this.

Task 6.1: Shell into Pod
With OpenShift you can open a remote shell into a Pod without installing SSH by using the command oc rsh .
The command can also be used to execute any command in a Pod.

Choose a Pod with oc get pods --namespace <namespace> and execute the following command:

You now have a running shell session inside the container in which you can execute every binary available,
e.g.:

total 12
-rw-r--r-- 1 10020700 root 8192 Nov 27 15:12 hellos.db
-rwxrwsr-x 1 web root 2454 Oct 5 08:55 run.py
drwxrwsr-x 1 web root 17 Oct 5 08:55 static
drwxrwsr-x 1 web root 63 Oct 5 08:55 templates

With exit or CTRL+d you can leave the container and close the connection:

Task 6.2: Single commands
Single commands inside a container can also be executed with oc rsh :

Note
If you’re using Git Bash on Windows, you need to append the command with winpty.

oc rsh --namespace <namespace> <pod>

ls -l

exit

- acend gmbh

38 / 108

Example:

oc rsh --namespace acend-test example-web-app-8b465c687-t9g7b env
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
TERM=xterm
HOSTNAME=example-web-app-8b465c687-t9g7b
NSS_SDB_USE_CACHE=no
KUBERNETES_PORT_443_TCP=tcp://172.30.0.1:443
KUBERNETES_PORT_443_TCP_PORT=443
EXAMPLE_WEB_APP_PORT_5000_TCP_PORT=5000
...

The debug command
One of the disadvantages of using the oc rsh command is that it depends on the container to actually run. If
the Pod can’t even start, this is a problem but also where the oc debug command comes in. The oc debug

command starts an interactive shell using the definition of a Deployment, Pod, DaemonSet, Job or even an
ImageStreamTag. In OpenShift 4 it can also be used to open a shell on a Node to analyze it.

The quick way of using it is oc debug RESOURCE/NAME but have a good look at its help page. There are some very
interesting parameters like --as-root that give you (depending on your permissions on the cluster) a very
powerful means of debugging a Pod.

Watching log files
Log files of a Pod can be shown with the following command:

The parameter -f allows you to follow the log file (same as tail -f). With this, log files are streamed and
new entries are shown immediately.

When a Pod is in state CrashLoopBackOff it means that although multiple attempts have been made, no
container inside the Pod could be started successfully. Now even though no container might be running at
the moment the oc logs command is executed, there is a way to view the logs the application might have
generated. This is achieved using the -p or --previous parameter.

Task 6.3: Port forwarding

oc rsh --namespace <namespace> <pod> <command>

oc logs <pod> --namespace <namespace>

Note
This command will only work on pods that had container restarts. You can check the RESTARTS column in the
oc get pods output if this is the case.

oc logs -p <pod> --namespace <namespace>

- acend gmbh

39 / 108

OpenShift allows you to forward arbitrary ports to your development workstation. This allows you to access
admin consoles, databases, etc., even when they are not exposed externally. Port forwarding is handled by
the OpenShift control plane nodes and therefore tunneled from the client via HTTPS. This allows you to
access the OpenShift platform even when there are restrictive firewalls or proxies between your workstation
and OpenShift.

Get the name of the Pod:

Then execute the port forwarding command using the Pod’s name:

Don’t forget to change the Pod name to your own installation. If configured, you can use auto-completion.

The output of the command should look like this:

Forwarding from 127.0.0.1:5000 -> 5000
Forwarding from [::1]:5000 -> 5000

The application is now available with the following link: http://localhost:5000/ . Or try a curl command:

With the same concept you can access databases from your local workstation or connect your local
development environment via remote debugging to your application in the Pod.

This documentation page offers some more details about port forwarding.

Events
OpenShift maintains an event log with high-level information on what’s going on in the cluster. It’s possible

oc get pod --namespace <namespace>

Note
Best run this command in a separate shell, or in the background by adding a “&” at the end of the
command.

oc port-forward <pod> 5000:5000 --namespace <namespace>

Note
Use the additional parameter --address <IP address> (where <IP address> refers to a NIC’s IP address from your
local workstation) if you want to access the forwarded port from outside your own local workstation.

curl localhost:5000

Note
The oc port-forward process runs as long as it is not terminated by the user. So when done, stop it with CTRL-c.

- acend gmbh

40 / 108

http://localhost:5000/
https://docs.openshift.com/container-platform/latest/nodes/containers/nodes-containers-port-forwarding.html

that everything looks okay at first but somehow something seems stuck. Make sure to have a look at the
events because they can give you more information if something is not working as expected.

Use the following command to list the events in chronological order:

Dry-run
To help verify changes, you can use the optional oc flag --dry-run=client -o yaml to see the rendered YAML
definition of your Kubernetes objects, without sending it to the API.

The following oc subcommands support this flag (non-final list):

apply

create

expose

patch

replace

run

set

For example, we can use the --dry-run=client flag to create a template for our Deployment:

The result is the following YAML output:

oc get events --sort-by=.metadata.creationTimestamp --namespace <namespace>

oc create deployment example-web-app --image=quay.io/acend/example-web-python:latest --namespace acend-test --dry-run=c
lient -o yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 creationTimestamp: null
 labels:
 app: example-web-app
 name: example-web-app
 namespace: acend-test
spec:
 replicas: 1
 selector:
 matchLabels:
 app: example-web-app
 strategy: {}
 template:
 metadata:
 creationTimestamp: null
 labels:
 app: example-web-app
 spec:
 containers:
 - image: quay.io/acend/example-web-python:latest
 name: example-web
 resources: {}
status: {}

- acend gmbh

41 / 108

oc API requests
If you want to see the HTTP requests oc sends to the Kubernetes API in detail, you can use the optional flag
--v=10 .

For example, to see the API request for creating a deployment:

The resulting output looks like this:

As you can see, the output conveniently contains the corresponding curl commands which we could use in
our own code, tools, pipelines etc.

oc create deployment test-deployment --image=quay.io/acend/example-web-python:latest --namespace <namespace> --replicas
=0 --v=10

I1114 15:31:13.605759 85289 request.go:1073] Request Body: {"kind":"Deployment","apiVersion":"apps/v1","metadata":{"n
ame":"test-deployment","namespace":"acend-test","creationTimestamp":null,"labels":{"app":"test-deployment"}},"spec":{"r
eplicas":0,"selector":{"matchLabels":{"app":"test-deployment"}},"template":{"metadata":{"creationTimestamp":null,"label
s":{"app":"test-deployment"}},"spec":{"containers":[{"name":"example-web","image":"quay.io/acend/example-web-python:lat
est","resources":{}}]}},"strategy":{}},"status":{}}
I1114 15:31:13.605817 85289 round_trippers.go:466] curl -v -XPOST -H "Accept: application/json, */*" -H "Content-Typ
e: application/json" -H "User-Agent: oc/4.11.0 (linux/amd64) kubernetes/262ac9c" -H "Authorization: Bearer <masked>" 'h
ttps://api.ocp-staging.cloudscale.puzzle.ch:6443/apis/apps/v1/namespaces/acend-test/deployments?fieldManager=kubectl-cr
eate&fieldValidation=Ignore'
I1114 15:31:13.607320 85289 round_trippers.go:495] HTTP Trace: DNS Lookup for api.ocp-staging.cloudscale.puzzle.ch re
solved to [{5.102.150.82 }]
I1114 15:31:13.611279 85289 round_trippers.go:510] HTTP Trace: Dial to tcp:5.102.150.82:6443 succeed
I1114 15:31:13.675096 85289 round_trippers.go:553] POST https://api.ocp-staging.cloudscale.puzzle.ch:6443/apis/apps/v
1/namespaces/acend-test/deployments?fieldManager=kubectl-create&fieldValidation=Ignore 201 Created in 69 milliseconds
I1114 15:31:13.675120 85289 round_trippers.go:570] HTTP Statistics: DNSLookup 1 ms Dial 3 ms TLSHandshake 35 ms Serve
rProcessing 27 ms Duration 69 ms
I1114 15:31:13.675137 85289 round_trippers.go:577] Response Headers:
I1114 15:31:13.675151 85289 round_trippers.go:580] Audit-Id: 509255b1-ee23-479a-be56-dfc3ab073864
I1114 15:31:13.675164 85289 round_trippers.go:580] Cache-Control: no-cache, private
I1114 15:31:13.675181 85289 round_trippers.go:580] Content-Type: application/json
I1114 15:31:13.675200 85289 round_trippers.go:580] X-Kubernetes-Pf-Flowschema-Uid: e3e152ee-768c-43c5-b350-bb3cbf
806147
I1114 15:31:13.675215 85289 round_trippers.go:580] X-Kubernetes-Pf-Prioritylevel-Uid: 47f392da-68d1-4e43-9d77-ff5
f7b7ecd2e
I1114 15:31:13.675230 85289 round_trippers.go:580] Content-Length: 1739
I1114 15:31:13.675244 85289 round_trippers.go:580] Date: Mon, 14 Nov 2022 14:31:13 GMT
I1114 15:31:13.676116 85289 request.go:1073] Response Body: {"kind":"Deployment","apiVersion":"apps/v1","metadata":{"
name":"test-deployment","namespace":"acend-test","uid":"a6985d28-3caa-451f-a648-4c7cde3b51ac","resourceVersion":"206938
5577","generation":1,"creationTimestamp":"2022-11-14T14:31:13Z","labels":{"app":"test-deployment"},"managedFields":[{"m
anager":"kubectl-create","operation":"Update","apiVersion":"apps/v1","time":"2022-11-14T14:31:13Z","fieldsType":"Fields
V1","fieldsV1":{"f:metadata":{"f:labels":{".":{},"f:app":{}}},"f:spec":{"f:progressDeadlineSeconds":{},"f:replicas":{},
"f:revisionHistoryLimit":{},"f:selector":{},"f:strategy":{"f:rollingUpdate":{".":{},"f:maxSurge":{},"f:maxUnavailable":
{}},"f:type":{}},"f:template":{"f:metadata":{"f:labels":{".":{},"f:app":{}}},"f:spec":{"f:containers":{"k:{\"name\":\"e
xample-web\"}":{".":{},"f:image":{},"f:imagePullPolicy":{},"f:name":{},"f:resources":{},"f:terminationMessagePath":{},"
f:terminationMessagePolicy":{}}},"f:dnsPolicy":{},"f:restartPolicy":{},"f:schedulerName":{},"f:securityContext":{},"f:t
erminationGracePeriodSeconds":{}}}}}}]},"spec":{"replicas":0,"selector":{"matchLabels":{"app":"test-deployment"}},"temp
late":{"metadata":{"creationTimestamp":null,"labels":{"app":"test-deployment"}},"spec":{"containers":[{"name":"example-
web","image":"quay.io/acend/example-web-python:latest","resources":{},"terminationMessagePath":"/dev/termination-log","
terminationMessagePolicy":"File","imagePullPolicy":"Always"}],"restartPolicy":"Always","terminationGracePeriodSeconds":
30,"dnsPolicy":"ClusterFirst","securityContext":{},"schedulerName":"default-scheduler"}},"strategy":{"type":"RollingUpd
ate","rollingUpdate":{"maxUnavailable":"25%","maxSurge":"25%"}},"revisionHistoryLimit":10,"progressDeadlineSeconds":600
},"status":{}}
deployment.apps/test-deployment created

Note
If you created the deployment to see the output, you can delete it again as it’s not used anywhere else

- acend gmbh

42 / 108

Progress
At this point, you are able to visualize your progress on the labs by browsing through the following page
http://localhost:5000/progress

If you are not able to open your awesome-app with localhost, because you are using a webshell, you can
also use the ingress address: https://example-web-app-<namespace>.<appdomain>/progress to access the dashboard.

You may need to set some extra permissions to let the dashboard monitor your progress. Have fun!

(which is also the reason why the replicas are set to 0):

oc delete deploy/test-deployment --namespace <namespace>

oc create rolebinding progress --clusterrole=view --serviceaccount=<namespace>:default --namespace=<namespace>

- acend gmbh

43 / 108

http://localhost:5000/progress

7. Attaching a database
Numerous applications are stateful in some way and want to save data persistently, be it in a database, as
files on a filesystem or in an object store. In this lab, we are going to create a MariaDB database and
configure our application to store its data in it.

Task 7.1: Instantiate a MariaDB database
We are going to use an OpenShift template to create the database. This can be done by either using the
Web Console or the CLI. Both are going to be explained in this lab, so pick the one you are more
comfortable with.

Instantiate a template using the Web Console
Make sure you are in OpenShift’s Developer view (upper left dropdown) and have selected the correct
Project:

Now click +Add, choose Database, MariaDB (Ephemeral) and then Instantiate Template. A form
opens. Check that the first field corresponds to the correct Project and set the MariaDB Database Name
field to acend_exampledb and leave the remaining fields as they are. Finally, click Create at the end of the
form.

Instantiate a template using the CLI

We are going to instantiate the MariaDB Template from the openshift Project. Before we can do that, we
need to know what parameters the Template expects. Let’s find out:

Warning
Please make sure you completed labs 2. First steps, 3. Deploying a container image and 4. Exposing a
service before you continue with this lab.

Warning
Do not execute these steps if you already have created a MariaDB database using the Web Console.

oc process --parameters openshift//mariadb-ephemeral

- acend gmbh

44 / 108

NAME DESCRIPTION GENERATOR V
ALUE
MEMORY_LIMIT Maximum amount of memory the container can use. 5
12Mi
NAMESPACE The OpenShift Namespace where the ImageStream resides. o
penshift
DATABASE_SERVICE_NAME The name of the OpenShift Service exposed for the database. m
ariadb
MYSQL_USER Username for MariaDB user that will be used for accessing the database. expression u
ser[A-Z0-9]{3}
MYSQL_PASSWORD Password for the MariaDB connection user. expression [
a-zA-Z0-9]{16}
MYSQL_ROOT_PASSWORD Password for the MariaDB root user. expression [
a-zA-Z0-9]{16}
MYSQL_DATABASE Name of the MariaDB database accessed. s
ampledb
MARIADB_VERSION Version of MariaDB image to be used (10.2 or latest). 1
0.2

As you might already see, each of the parameters has a default value (“VALUE” column). Also, the
parameters MYSQL_USER , MYSQL_PASSWORD and MYSQL_ROOT_PASSWORD are going to be generated (“GENERATOR” is set
to expression and “VALUE” contains a regular expression). This means we don’t necessarily have to
overwrite any of them so let’s simply use those defaults:

The output should be:

secret/mariadb created
service/mariadb created
deploymentconfig.apps.openshift.io/mariadb created

Task 7.2: Inspection
What just happened is that you instantiated an OpenShift Template that creates multiple resources using
the (default) values as parameters. Let’s have a look at the resources that have just been created by
looking at the Template’s definition:

The Template’s content reveals a Secret, a Service and a DeploymentConfig.

The Secret contains the database name, user, password, and the root password. However, these values will
neither be shown with oc get nor with oc describe :

oc process openshift//mariadb-ephemeral -pMYSQL_DATABASE=acend_exampledb | oc apply --namespace=<namespace> -f -

oc get templates -n openshift mariadb-ephemeral -o yaml

oc get secret mariadb --output yaml --namespace <namespace>

- acend gmbh

45 / 108

apiVersion: v1
data:
 database-name: YWNlbmQtZXhhbXBsZS1kYg==
 database-password: bXlzcWxwYXNzd29yZA==
 database-root-password: bXlzcWxyb290cGFzc3dvcmQ=
 database-user: YWNlbmRfdXNlcg==
kind: Secret
metadata:
 ...
type: Opaque

The reason is that all the values in the .data section are base64 encoded. Even though we cannot see the
true values, they can easily be decoded:

The interesting thing about Secrets is that they can be reused, e.g., in different Deployments. We could
extract all the plaintext values from the Secret and put them as environment variables into the
Deployments, but it’s way easier to instead simply refer to its values inside the Deployment (as in this lab)
like this:

echo "YWNlbmQtZXhhbXBsZS1kYg==" | base64 -d

Note
There’s also the oc extract command which can be used to extract the content of Secrets and ConfigMaps
into a local directory. Use oc extract --help to see how it works.

Note
By default, Secrets are not encrypted!

However, both OpenShift and Kubernetes (1.13 and later) offer the capability to encrypt data in etcd.

Another option would be the use of a secrets management solution like Vault by HashiCorp .

- acend gmbh

46 / 108

https://docs.openshift.com/container-platform/latest/security/encrypting-etcd.html
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://www.vaultproject.io/

...
spec:
 template:
 spec:
 containers:
 - name: mariadb
 env:
 - name: MYSQL_USER
 valueFrom:
 secretKeyRef:
 key: database-user
 name: mariadb
 - name: MYSQL_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-password
 name: mariadb
 - name: MYSQL_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-root-password
 name: mariadb
 - name: MYSQL_DATABASE
 valueFrom:
 secretKeyRef:
 key: database-name
 name: mariadb
...

Above lines are an excerpt of the MariaDB Deployment. Most parts have been cut out to focus on the
relevant lines: The references to the mariadb Secret. As you can see, instead of directly defining
environment variables you can refer to a specific key inside a Secret. We are going to make further use of
this concept for our Python application.

Task 7.3: Attach the database to the application
By default, our example-web-app application uses an SQLite memory database.

However, this can be changed by defining the following environment variable to use the newly created
MariaDB database:

#MYSQL_URI=mysql://<user>:<password>@<host>/<database>
MYSQL_URI=mysql://acend_user:mysqlpassword@mariadb/acend_exampledb

The connection string our example-web-app application uses to connect to our new MariaDB, is a concatenated
string from the values of the mariadb Secret.

For the actual MariaDB host, you can either use the MariaDB Service’s ClusterIP or DNS name as the
address. All Services and Pods can be resolved by DNS using their name.

The following commands set the environment variables for the deployment configuration of the example-web-

app application:

Warning
Depending on the shell you use, the following set env command works but inserts too many apostrophes!
Check the deployment’s environment variable afterwards or directly edit it as described further down
below.

- acend gmbh

47 / 108

and

The first command inserts the values from the Secret, the second finally uses these values to put them in
the environment variable MYSQL_URI which the application considers.

You can also do the changes by directly editing your local deployment_example-web-app.yaml file. Find the section
which defines the containers. You should find it under:

...
spec:
...
 template:
 ...
 spec:
 containers:
 - image: ...
...

The dash before image: defines the beginning of a new container definition. The following specifications
should be inserted into this container definition:

Your file should now look like this:

oc set env --from=secret/mariadb --prefix=MYSQL_ deploy/example-web-app --namespace <namespace>

oc set env deploy/example-web-app MYSQL_URI='mysql://$(MYSQL_DATABASE_USER):$(MYSQL_DATABASE_PASSWORD)@mariadb/$(MYSQL_
DATABASE_NAME)' --namespace <namespace>

 env:
 - name: MYSQL_DATABASE_NAME
 valueFrom:
 secretKeyRef:
 key: database-name
 name: mariadb
 - name: MYSQL_DATABASE_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-password
 name: mariadb
 - name: MYSQL_DATABASE_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-root-password
 name: mariadb
 - name: MYSQL_DATABASE_USER
 valueFrom:
 secretKeyRef:
 key: database-user
 name: mariadb
 - name: MYSQL_URI
 value: mysql://$(MYSQL_DATABASE_USER):$(MYSQL_DATABASE_PASSWORD)@mariadb/$(MYSQL_DATABASE_NAME)

- acend gmbh

48 / 108

 ...
 containers:
 - image: quay.io/acend/example-web-python:latest
 imagePullPolicy: Always
 name: example-web-app
 ...
 env:
 - name: MYSQL_DATABASE_NAME
 valueFrom:
 secretKeyRef:
 key: database-name
 name: mariadb
 - name: MYSQL_DATABASE_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-password
 name: mariadb
 - name: MYSQL_DATABASE_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-root-password
 name: mariadb
 - name: MYSQL_DATABASE_USER
 valueFrom:
 secretKeyRef:
 key: database-user
 name: mariadb
 - name: MYSQL_URI
 value: mysql://$(MYSQL_DATABASE_USER):$(MYSQL_DATABASE_PASSWORD)@mariadb/$(MYSQL_DATABASE_NAME)

Then use:

to apply the changes.

The environment can also be checked with the set env command and the --list parameter:

This will show the environment as follows:

deployments/example-web-app, container example-web-app
MYSQL_DATABASE_PASSWORD from secret mariadb, key database-password
MYSQL_DATABASE_ROOT_PASSWORD from secret mariadb, key database-root-password
MYSQL_DATABASE_USER from secret mariadb, key database-user
MYSQL_DATABASE_NAME from secret mariadb, key database-name
MYSQL_URI=mysql://$(MYSQL_DATABASE_USER):$(MYSQL_DATABASE_PASSWORD)@mariadb/$(MYSQL_DATABASE_NAME)

oc apply -f deployment_example-web-app.yaml --namespace <namespace>

oc set env deploy/example-web-app --list --namespace <namespace>

Warning
Do not proceed with the lab before all example-web-app pods are restarted successfully.

The change of the deployment definition (environment change) triggers a new rollout and all example-web-
app pods will be restarted. The application will not be connected to the database until all pods are restarted
successfully.

- acend gmbh

49 / 108

In order to find out if the change worked we can either look at the container’s logs (oc logs <pod>) or we
could register some “Hellos” in the application, delete the Pod, wait for the new Pod to be started and check
if they are still there.

Task 7.4: Manual database connection
As described in 6. Troubleshooting we can log into a Pod with oc rsh <pod> .

Show all Pods:

Which gives you an output similar to this:

NAME READY STATUS RESTARTS AGE
example-web-app-574544fd68-qfkcm 1/1 Running 0 2m20s
mariadb-f845ccdb7-hf2x5 1/1 Running 0 31m
mariadb-1-deploy 0/1 Completed 0 11m

Log into the MariaDB Pod:

You are now able to connect to the database and display the data. Login with:

Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 52810
Server version: 10.2.22-MariaDB MariaDB Server

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [acend_exampledb]>

Show all tables with:

Note
This does not work if we delete the database Pod as its data is not yet persisted.

oc get pods --namespace <namespace>

Note
As mentioned in 6. Troubleshooting, remember to append the command with winpty if you’re using Git Bash
on Windows.

oc rsh --namespace <namespace> <mariadb-pod-name>

mysql -u$MYSQL_USER -p$MYSQL_PASSWORD -h$MARIADB_SERVICE_HOST $MYSQL_DATABASE

- acend gmbh

50 / 108

Show any entered “Hellos” with:

Task 7.5: Import a database dump
Our task is now to import this dump.sql into the MariaDB database running as a Pod. Use the mysql

command line utility to do this. Make sure the database is empty beforehand. You could also delete and
recreate the database.

Solution
This is how you copy the database dump into the MariaDB Pod.

Download the dump.sql or get it with curl:

Copy the dump into the MariaDB Pod:

This is how you log into the MariaDB Pod:

This command shows how to drop the whole database:

show tables;

select * from hello;

Note
You can also copy local files into a Pod using oc cp. Be aware that the tar binary has to be present inside the
container and on your operating system in order for this to work! Install tar on UNIX systems with e.g. your
package manager, on Windows there’s e.g. cwRsync . If you cannot install tar on your host, there’s also the
possibility of logging into the Pod and using curl -O <url>.

curl -O https://raw.githubusercontent.com/acend/kubernetes-basics-training/main/content/en/docs/attaching-a-database/du
mp.sql

oc cp ./dump.sql <podname>:/tmp/ --namespace <namespace>

oc rsh --namespace <namespace> <podname>

mysql -u$MYSQL_USER -p$MYSQL_PASSWORD -h$MARIADB_SERVICE_HOST $MYSQL_DATABASE

- acend gmbh

51 / 108

https://raw.githubusercontent.com/acend/kubernetes-basics-training/main/content/en/docs/attaching-a-database/dump.sql
https://www.itefix.net/cwrsync
https://raw.githubusercontent.com/acend/kubernetes-basics-training/main/content/en/docs/attaching-a-database/dump.sql

Import a dump:

Check your app to see the imported “Hellos”.

drop database `acend_exampledb`;
create database `acend_exampledb`;
exit

mysql -u$MYSQL_USER -p$MYSQL_PASSWORD -h$MARIADB_SERVICE_HOST $MYSQL_DATABASE < /tmp/dump.sql

Note
You can find your app URL by looking at your route:

oc get route --namespace <namespace>

Note
A database dump can be created as follows:

oc rsh --namespace <namespace> <podname>

mysqldump --user=$MYSQL_USER --password=$MYSQL_PASSWORD -h$MARIADB_SERVICE_HOST $MYSQL_DATABASE > /tmp/dump.sql

oc cp <podname>:/tmp/dump.sql /tmp/dump.sql

- acend gmbh

52 / 108

8. Persistent storage
By default, data in containers is not persistent as was the case e.g. in 7. Attaching a database. This means
that the data written in a container is lost as soon as it does not exist anymore. We want to prevent this
from happening. One possible solution to this problem is to use persistent storage.

Request storage
Attaching persistent storage to a Pod happens in two steps. The first step includes the creation of a so-
called PersistentVolumeClaim (PVC) in our namespace. This claim defines amongst other things what size
we would like to get.

The PersistentVolumeClaim only represents a request but not the storage itself. It is automatically going to
be bound to a PersistentVolume by OpenShift, one that has at least the requested size. If only volumes exist
that have a bigger size than was requested, one of these volumes is going to be used. The claim will
automatically be updated with the new size. If there are only smaller volumes available, the claim cannot be
fulfilled as long as no volume with the exact same or larger size is created.

Attaching a volume to a Pod
In a second step, the PVC from before is going to be attached to the Pod. In 5. Scaling we used oc set to
add a readiness probe to the Deployment. We are now going to do the same and insert the
PersistentVolume.

Task 8.1: Add a PersistentVolume
The oc set volume command makes it possible to create a PVC and attach it to a Deployment in one fell
swoop:

With the instruction above we create a PVC named mariadb-data of 1Gi in size, attach it to the
DeploymentConfig mariadb and mount it at /var/lib/mysql . This is where the MariaDB process writes its data
by default so after we make this change, the database will not even notice that it is writing in a
PersistentVolume.

We need to redeploy the application pod, our application automatically creates the database schema at

Note
If you are using Windows, your shell might assume that it has to use the POSIX-to-Windows path conversion
for the mount path /var/lib/mysql . PowerShell is known to not do this while, e.g., Git Bash does.

Prepend your command with MSYS_NO_PATHCONV=1 if the resulting mount path was mistakenly converted.

oc set volume dc/mariadb --add --name=mariadb-data --claim-name=mariadb-data --type persistentVolumeClaim --mount-path=
/var/lib/mysql --claim-size=1G --overwrite --namespace <namespace>

Note
Because we just changed the DeploymentConfig with the oc set command, a new Pod was automatically
redeployed. This unfortunately also means that we just lost the data we inserted before.

- acend gmbh

53 / 108

startup time. Wait for the database pod to be started fully before restarting the application pod.

If you want to force a redeployment of a Pod, you can use this:

Using the command oc get persistentvolumeclaim or oc get pvc , we can display the freshly created
PersistentVolumeClaim:

Which gives you an output similar to this:

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
mariadb-data Bound pvc-2cb78deb-d157-11e8-a406-42010a840034 1Gi RWO standard 11s

The two columns STATUS and VOLUME show us that our claim has been bound to the PersistentVolume pvc-

2cb78deb-d157-11e8-a406-42010a840034 .

Error case
If the container is not able to start it is the right moment to debug it! Check the logs from the container and
search for the error.

Task 8.2: Persistence check
Restore data
Repeat the task to import a database dump .

Test
Scale your MariaDB Pod to 0 replicas and back to 1. Observe that the new Pod didn’t loose any data.

oc rollout restart deployment example-web-app --namespace <namespace>

oc get pvc --namespace <namespace>

oc logs mariadb-f845ccdb7-hf2x5 --namespace <namespace>

Note
If the container won’t start because the data directory already has files in it, use the oc debug command
mentioned in 7. Attaching a database to check its content and remove it if necessary.

- acend gmbh

54 / 108

file:///attaching-a-database/#task-75-import-a-database-dump

9. Additional concepts
OpenShift does not only know Pods, Deployments, Services, etc. There are various other kinds of resources.
In the next few labs, we are going to have a look at some of them.

9.1. StatefulSets
Stateless applications or applications with a stateful backend can be described as Deployments. However,
sometimes your application has to be stateful. Examples would be an application that needs a static, non-
changing hostname every time it starts or a clustered application with a strict start/stop order of its services
(e.g. RabbitMQ). These features are offered by StatefulSets.

Consistent hostnames
While in normal Deployments a hash-based name of the Pods (also represented as the hostname inside the
Pod) is generated, StatefulSets create Pods with preconfigured names. An example of a RabbitMQ cluster
with three instances (Pods) could look like this:

rabbitmq-0
rabbitmq-1
rabbitmq-2

Scaling
Scaling is handled differently in StatefulSets. When scaling up from 3 to 5 replicas in a Deployment, two
additional Pods are started at the same time (based on the configuration). Using a StatefulSet, scaling is
done serially:

Let’s use our RabbitMQ example again:

1. The StatefulSet is scaled up using: oc scale deployment rabbitmq --replicas=5 --namespace <namespace>

2. rabbitmq-3 is started
3. As soon as Pod rabbitmq-3 is in Ready state the same procedure starts for rabbitmq-4

When scaling down, the order is inverted. The highest-numbered Pod will be stopped first. As soon as it has
finished terminating the now highest-numbered Pod is stopped. This procedure is repeated as long as the
desired number of replicas has not been reached.

Update procedure
During an update of an application with a StatefulSet the highest-numbered Pod will be the first to be
updated and only after a successful start the next Pod follows.

1. Highest-numbered Pod is stopped
2. New Pod (with new image tag) is started
3. If the new Pod successfully starts, the procedure is repeated for the second highest-numbered Pod
4. And so on

Note
This lab does not depend on other labs.

- acend gmbh

55 / 108

If the start of a new Pod fails, the update will be interrupted so that the architecture of your application
won’t break.

Dedicated persistent volumes
A very convenient feature is that unlike a Deployment a StatefulSet makes it possible to attach a different,
dedicated persistent volume to each of its Pods. This is done using a so-called VolumeClaimTemplate. This
spares you from defining identical Deployments with 1 replica each but different volumes.

Conclusion
The controllable and predictable behavior can be a perfect match for applications such as RabbitMQ or etcd,
as you need unique names for such application clusters.

Task 9.1.1: Create a StatefulSet
Create a file named sts_nginx-cluster.yaml with the following definition of a StatefulSet:

Create the StatefulSet:

To watch the pods’ progress, open a second console and execute the watch command:

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: nginx-cluster
spec:
 serviceName: "nginx"
 replicas: 1
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginxinc/nginx-unprivileged:1.18-alpine
 ports:
 - containerPort: 8080
 name: nginx
 resources:
 limits:
 cpu: 40m
 memory: 64Mi
 requests:
 cpu: 10m
 memory: 32Mi

oc apply -f sts_nginx-cluster.yaml --namespace <namespace>

- acend gmbh

56 / 108

Task 9.1.2: Scale the StatefulSet
Scale the StatefulSet up:

You can again watch the pods’ progress like you did in the first task.

Task 9.1.3: Update the StatefulSet
In order to update the image tag in use in a StatefulSet, you can use the oc set image command. Set the
StatefulSet’s image tag to latest :

Task 9.1.4: Rollback
Imagine you just realized that switching to the latest image tag was an awful idea (because it is generally
not advisable). Rollback the change:

Task 9.1.5: Cleanup
As with every other OpenShift resource you can delete the StatefulSet with:

oc delete statefulset nginx-cluster --namespace <namespace>

Further information can be found in the Kubernetes’ StatefulSet documentation or this published article .

oc get pods --selector app=nginx -w --namespace <namespace>

Note
Friendly reminder that the oc get -w command will never end unless you terminate it with CTRL-c.

oc scale statefulset nginx-cluster --replicas=3 --namespace <namespace>

oc set image statefulset nginx-cluster nginx=docker.io/nginxinc/nginx-unprivileged:latest --namespace <namespace>

oc rollout undo statefulset nginx-cluster --namespace <namespace>

Warning
To avoid issues on your personal progress dashboard, we would advise not to delete the StatefulSet from
this lab

- acend gmbh

57 / 108

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://opensource.com/article/17/2/stateful-applications

9.2. DaemonSets
A DaemonSet is almost identical to a normal Deployment. The difference is that it makes sure that exactly
one Pod is running on every (or some specified) Node. When a new Node is added, the DaemonSet
automatically deploys a Pod on the new Node if its selector matches. When the DaemonSet is deleted, all
related Pods are deleted.

One obvious use case for a DaemonSet is some kind of agent or daemon to e.g. grab logs from each Node
of the cluster (e.g., Fluentd, Logstash or a Splunk forwarder).

More information about DaemonSet can be found in the documentation .

- acend gmbh

58 / 108

https://docs.openshift.com/container-platform/latest/nodes/jobs/nodes-pods-daemonsets.html

9.3. CronJobs and Jobs
Jobs are different from normal Deployments: Jobs execute a time-constrained operation and report the
result as soon as they are finished; think of a batch job. To achieve this, a Job creates a Pod and runs a
defined command. A Job isn’t limited to creating a single Pod, it can also create multiple Pods. When a Job is
deleted, the Pods started (and stopped) by the Job are also deleted.

For example, a Job is used to ensure that a Pod is run until its completion. If a Pod fails, for example because
of a Node error, the Job starts a new one. A Job can also be used to start multiple Pods in parallel.

More detailed information can be retrieved from the OpenShift documentation .

Task 9.3.1: Create a Job for a database dump
Similar to the task to import a database dump , we now want to create a dump of the running database, but
without the need of interactively logging into the Pod.

Let’s first look at the Job resource that we want to create.

Note
This lab depends on 7. Attaching a database or 8. Persistent storage.

- acend gmbh

59 / 108

https://docs.openshift.com/container-platform/latest/nodes/jobs/nodes-nodes-jobs.html
file:///attaching-a-database/#task-75-import-a-database-dump

The parameter .spec.template.spec.containers[0].image shows that we use the same image as the running
database. In contrast to the database Pod, we don’t start a database afterwards, but run a mysqldump

command, specified with .spec.template.spec.containers[0].command . To perform the dump, we use the
environment variables of the database deployment to set the hostname, user and password parameters of
the mysqldump command. The MYSQL_PASSWORD variable refers to the value of the secret, which is already used
for the database Pod. This way we ensure that the dump is performed with the same credentials.

Let’s create our Job: Create a file named job_database-dump.yaml with the content above and execute the
following command:

Check if the Job was successful:

apiVersion: batch/v1
kind: Job
metadata:
 name: database-dump
spec:
 template:
 spec:
 containers:
 - name: mariadb
 image: mariadb:10.5
 command:
 - 'bash'
 - '-eo'
 - 'pipefail'
 - '-c'
 - >
 trap "echo Backup failed; exit 0" ERR;
 FILENAME=backup-${MYSQL_DATABASE}-`date +%Y-%m-%d_%H%M%S`.sql.gz;
 mysqldump --user=${MYSQL_USER} --password=${MYSQL_PASSWORD} --host=${MYSQL_HOST} --port=${MYSQL_PORT} --skip-
lock-tables --quick --add-drop-database --routines ${MYSQL_DATABASE} | gzip > /tmp/$FILENAME;
 echo "";
 echo "Backup successful"; du -h /tmp/$FILENAME;
 env:
 - name: MYSQL_DATABASE
 valueFrom:
 secretKeyRef:
 key: database-name
 name: mariadb
 - name: MYSQL_USER
 valueFrom:
 secretKeyRef:
 key: database-user
 name: mariadb
 - name: MYSQL_HOST
 value: mariadb
 - name: MYSQL_PORT
 value: "3306"
 - name: MYSQL_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-password
 name: mariadb
 resources:
 limits:
 cpu: 100m
 memory: 128Mi
 requests:
 cpu: 20m
 memory: 64Mi
 restartPolicy: Never

oc apply -f ./job_database-dump.yaml --namespace <namespace>

- acend gmbh

60 / 108

The executed Pod can be shown as follows:

To show all Pods belonging to a Job in a human-readable format, the following command can be used:

CronJobs
A CronJob is nothing else than a resource which creates a Job at a defined time, which in turn starts (as we
saw in the previous section) a Pod to run a command. Typical use cases are cleanup Jobs, which tidy up old
data for a running Pod, or a Job to regularly create and save a database dump as we just did during this lab.

The CronJob’s definition will remind you of the Deployment’s structure, or really any other control resource.
There’s most importantly the schedule specification in cron schedule format , some more things you could
define and then the Job’s definition itself that is going to be created by the CronJob:

Further information can be found in the OpenShift CronJob documentation .

oc describe jobs/database-dump --namespace <namespace>

oc get pods --namespace <namespace>

oc get pods --selector=job-name=database-dump --output=go-template="{{range .items}}{{.metadata.name}}{{end}}" --namesp
ace <namespace>

apiVersion: batch/v1
kind: CronJob
metadata:
 name: database-dump
spec:
 schedule: "5 4 * * *"
 concurrencyPolicy: "Replace"
 startingDeadlineSeconds: 200
 successfulJobsHistoryLimit: 3
 failedJobsHistoryLimit: 1
 jobTemplate:
 spec:
 template:
 spec:
 containers:
 - name: mariadb
 ...

- acend gmbh

61 / 108

https://crontab.guru/
https://docs.openshift.com/container-platform/latest/nodes/jobs/nodes-nodes-jobs.html

9.4. ConfigMaps
Similar to environment variables, ConfigMaps allow you to separate the configuration for an application from
the image. Pods can access those variables at runtime which allows maximum portability for applications
running in containers. In this lab, you will learn how to create and use ConfigMaps.

ConfigMap creation
A ConfigMap can be created using the oc create configmap command as follows:

Where the <data-source> can be a file, directory, or command line input.

Task 9.4.1: Java properties as ConfigMap
A classic example for ConfigMaps are properties files of Java applications which can’t be configured with
environment variables.

First, create a file called java.properties with the following content:

Now you can create a ConfigMap based on that file:

Verify that the ConfigMap was created successfully:

NAME DATA AGE
javaconfiguration 1 7s

Have a look at its content:

Which should yield output similar to this one:

oc create configmap <name> <data-source> --namespace <namespace>

key=value
key2=value2

oc create configmap javaconfiguration --from-file=./java.properties --namespace <namespace>

oc get configmaps --namespace <namespace>

oc get configmap javaconfiguration -o yaml --namespace <namespace>

- acend gmbh

62 / 108

Task 9.4.2: Attach the ConfigMap to a container
Next, we want to make a ConfigMap accessible for a container. There are basically the following possibilities
to achieve this :

ConfigMap properties as environment variables in a Deployment
Command line arguments via environment variables
Mounted as volumes in the container

In this example, we want the file to be mounted as a volume inside the container.

As in 8. Persistent storage, we can use the oc set volume command to achieve this:

This results in the addition of the following parts to the Deployment (check with oc get deploy example-web-app -o

yaml):

This means that the container should now be able to access the ConfigMap’s content in
/etc/config/java.properties . Let’s check:

apiVersion: v1
kind: ConfigMap
metadata:
 name: javaconfiguration
data:
 java.properties: |
 key=value
 key2=value2

Note
If you are using Windows and your shell uses the POSIX-to-Windows path conversion, remember to prepend
your command with MSYS_NO_PATHCONV=1 if the resulting mount path was mistakenly converted.

oc set volume deploy/example-web-app --add --configmap-name=javaconfiguration --mount-path=/etc/config --name=config-vo
lume --type configmap --namespace <namespace>

Note
This task doesn’t have any effect on the example application inside the container. It is for demonstration
purposes only.

 ...
 volumeMounts:
 - mountPath: /etc/config
 name: config-volume
 ...
 volumes:
 - configMap:
 defaultMode: 420
 name: javaconfiguration
 name: config-volume
 ...

- acend gmbh

63 / 108

https://docs.openshift.com/container-platform/latest/applications/config-maps.html

Like this, the property file can be read and used by the application inside the container. The image stays
portable to other environments.

Task 9.4.3: ConfigMap environment variables
Use a ConfigMap by populating environment variables into the container instead of a file.

oc exec <pod> --namespace <namespace> -- cat /etc/config/java.properties

Note
On Windows, you can use Git Bash with winpty oc exec -it <pod> --namespace <namespace> -- cat
//etc/config/java.properties.

key=value
key2=value2

- acend gmbh

64 / 108

https://docs.openshift.com/container-platform/latest/applications/config-maps.html#nodes-pods-configmaps-use-case-consuming-in-env-vars_config-maps

9.5. ResourceQuotas and LimitRanges
In this lab, we are going to look at ResourceQuotas and LimitRanges. As OpenShift users, we are most
certainly going to encounter the limiting effects that ResourceQuotas and LimitRanges impose.

ResourceQuotas
ResourceQuotas among other things limit the amount of resources Pods can use in a Namespace. They can
also be used to limit the total number of a certain resource type in a Project. In more detail, there are these
kinds of quotas:

Compute ResourceQuotas can be used to limit the amount of memory and CPU
Storage ResourceQuotas can be used to limit the total amount of storage and the number of
PersistentVolumeClaims, generally or specific to a StorageClass
Object count quotas can be used to limit the number of a certain resource type such as Services, Pods
or Secrets

Defining ResourceQuotas makes sense when the cluster administrators want to have better control over
consumed resources. A typical use case are public offerings where users pay for a certain guaranteed
amount of resources which must not be exceeded.

In order to check for defined quotas in your Namespace, simply see if there are any of type ResourceQuota:

To show in detail what kinds of limits the quota imposes:

For more details, have look into OpenShift’s documentation about resource quotas .

Requests and limits
As we’ve already seen, compute ResourceQuotas limit the amount of memory and CPU we can use in a
Project. Only defining a ResourceQuota, however is not going to have an effect on Pods that don’t define the
amount of resources they want to use. This is where the concept of limits and requests comes into play.

Limits and requests on a Pod, or rather on a container in a Pod, define how much memory and CPU this
container wants to consume at least (request) and at most (limit). Requests mean that the container will be
guaranteed to get at least this amount of resources, limits represent the upper boundary which cannot be
crossed. Defining these values helps OpenShift in determining on which Node to schedule the Pod because
it knows how many resources should be available for it.

Warning
For this lab to work it is vital that you use the namespace <username>-quota !

oc get resourcequota --namespace <namespace>-quota

oc describe resourcequota <quota-name> --namespace <namespace>-quota

Note

- acend gmbh

65 / 108

https://docs.openshift.com/container-platform/latest/applications/quotas/quotas-setting-per-project.html

Defining limits and requests on a Pod that has one container looks like this:

apiVersion: v1
kind: Pod
metadata:
 name: lr-demo
 namespace: lr-example
spec:
 containers:
 - name: lr-demo-ctr
 image: docker.io/nginxinc/nginx-unprivileged:latest
 resources:
 limits:
 memory: "200Mi"
 cpu: "700m"
 requests:
 memory: "200Mi"
 cpu: "700m"

You can see the familiar binary unit “Mi” is used for the memory value. Other binary (“Gi”, “Ki”, …) or
decimal units (“M”, “G”, “K”, …) can be used as well.

The CPU value is denoted as “m”. “m” stands for millicpu or sometimes also referred to as millicores where
"1000m" is equal to one core/vCPU/hyperthread.

Quality of service
Setting limits and requests on containers has yet another effect: It might change the Pod’s Quality of
Service class. There are three such QoS classes:

Guaranteed
Burstable
BestEffort

The Guaranteed QoS class is applied to Pods that define both limits and requests for both memory and CPU
resources on all their containers. The most important part is that each request has the same value as the
limit. Pods that belong to this QoS class will never be killed by the scheduler because of resources running
out on a Node.

The Burstable QoS class means that limits and requests on a container are set, but they are different. It is
enough to define limits and requests on one container of a Pod even though there might be more, and it
also only has to define limits and requests on memory or CPU, not necessarily both.

The BestEffort QoS class applies to Pods that do not define any limits and requests at all on any containers.
As its class name suggests, these are the kinds of Pods that will be killed by the scheduler first if a Node
runs out of memory or CPU. As you might have already guessed by now, if there are no BestEffort QoS Pods,
the scheduler will begin to kill Pods belonging to the class of Burstable. A Node hosting only Pods of class
Guaranteed will (theoretically) never run out of resources.

LimitRanges

Containers using more CPU time than what their limit allows will be throttled. Containers using more
memory than what they are allowed to use will be killed.

Note
If a container only defines its limits, OpenShift automatically assigns a request that matches the limit.

- acend gmbh

66 / 108

As you now know what limits and requests are, we can come back to the statement made above:

As we’ve already seen, compute ResourceQuotas limit the amount of memory and CPU we can use in a
Namespace. Only defining a ResourceQuota, however is not going to have an effect on Pods that don’t
define the amount of resources they want to use. This is where the concept of limits and requests comes
into play.

So, if a cluster administrator wanted to make sure that every Pod in the cluster counted against the
compute ResourceQuota, the administrator would have to have a way of defining some kind of default limits
and requests that were applied if none were defined in the containers. This is exactly what LimitRanges are
for.

Quoting the Kubernetes documentation , LimitRanges can be used to:

Enforce minimum and maximum compute resource usage per Pod or container in a Namespace
Enforce minimum and maximum storage requests per PersistentVolumeClaim in a Namespace
Enforce a ratio between request and limit for a resource in a Namespace
Set default request/limit for compute resources in a Namespace and automatically inject them to
containers at runtime

If for example a container did not define any requests or limits and there was a LimitRange defining the
default values, these default values would be used when deploying said container. However, as soon as
limits or requests were defined, the default values would no longer be applied.

The possibility of enforcing minimum and maximum resources and defining ResourceQuotas per Namespace
allows for many combinations of resource control.

Task 9.5.1: Namespace

Analyse the LimitRange in your Namespace (there has to be one, if not you are using the wrong
Namespace):

The command above should output this (name and Namespace will vary):

Name: ce01a1b6-a162-479d-847c-4821255cc6db
Namespace: eltony-quota-lab
Type Resource Min Max Default Request Default Limit Max Limit/Request Ratio
---- -------- --- --- --------------- ------------- -----------------------
Container memory - - 16Mi 32Mi -
Container cpu - - 10m 100m -

Check for the ResourceQuota in your Namespace (there has to be one, if not you are using the wrong
Namespace):

Warning
Remember to use the namespace <username>-quota , otherwise this lab will not work!

oc describe limitrange --namespace <namespace>-quota

oc describe quota --namespace <namespace>-quota

- acend gmbh

67 / 108

https://kubernetes.io/docs/concepts/policy/limit-range/

The command above will produce an output similar to the following (name and namespace may vary)

Name: lab-quota
Namespace: eltony-quota-lab
Resource Used Hard
-------- ---- ----
requests.cpu 0 100m
requests.memory 0 100Mi

Task 9.5.2: Default memory limit
Create a Pod using the stress image:

Apply this resource with:

Watch the Pod’s creation with:

You should see something like the following:

NAME READY STATUS RESTARTS AGE
stress2much 0/1 ContainerCreating 0 1s
stress2much 0/1 ContainerCreating 0 2s
stress2much 0/1 OOMKilled 0 5s
stress2much 1/1 Running 1 7s
stress2much 0/1 OOMKilled 1 9s
stress2much 0/1 CrashLoopBackOff 1 20s

apiVersion: v1
kind: Pod
metadata:
 name: stress2much
spec:
 containers:
 - command:
 - stress
 - --vm
 - "1"
 - --vm-bytes
 - 85M
 - --vm-hang
 - "1"
 image: quay.io/acend/stress:latest
 imagePullPolicy: Always
 name: stress

oc apply -f pod_stress2much.yaml --namespace <namespace>-quota

Note
You have to actively terminate the following command pressing CTRL+c on your keyboard.

oc get pods --watch --namespace <namespace>-quota

- acend gmbh

68 / 108

The stress2much Pod was OOM (out of memory) killed. We can see this in the STATUS field. Another way to find
out why a Pod was killed is by checking its status. Output the Pod’s YAML definition:

Near the end of the output you can find the relevant status part:

So let’s look at the numbers to verify the container really had too little memory. We started the stress

command using the parameter --vm-bytes 85M which means the process wants to allocate 85 megabytes of
memory. Again looking at the Pod’s YAML definition with:

reveals the following values:

...
 resources:
 limits:
 cpu: 100m
 memory: 32Mi
 requests:
 cpu: 10m
 memory: 16Mi
...

These are the values from the LimitRange, and the defined limit of 32 MiB of memory prevents the stress

process of ever allocating the desired 85 MB.

Let’s fix this by recreating the Pod and explicitly setting the memory request to 85 MB.

First, delete the stress2much pod with:

Then create a new Pod where the requests and limits are set:

oc get pod stress2much --output yaml --namespace <namespace>-quota

 containerStatuses:
 - containerID: docker://da2473f1c8ccdffbb824d03689e9fe738ed689853e9c2643c37f206d10f93a73
 image: quay.io/acend/stress:latest
 lastState:
 terminated:
 ...
 reason: OOMKilled
 ...

oc get pod stress2much --output yaml --namespace <namespace>-quota

oc delete pod stress2much --namespace <namespace>-quota

- acend gmbh

69 / 108

And apply this again with:

You should now see that the Pod is successfully running:

NAME READY STATUS RESTARTS AGE
stress 1/1 Running 0 25s

Task 9.5.3: Hitting the quota
Create another Pod, again using the stress image. This time our application is less demanding and only
needs 10 MB of memory (--vm-bytes 10M):

Create a new Pod resource with:

apiVersion: v1
kind: Pod
metadata:
 name: stress
spec:
 containers:
 - command:
 - stress
 - --vm
 - "1"
 - --vm-bytes
 - 85M
 - --vm-hang
 - "1"
 image: quay.io/acend/stress:latest
 imagePullPolicy: Always
 name: stress
 resources:
 limits:
 cpu: 100m
 memory: 100Mi
 requests:
 cpu: 10m
 memory: 85Mi

oc apply -f pod_stress.yaml --namespace <namespace>-quota

Note
Remember, if you only set the limit, the request will be set to the same value.

- acend gmbh

70 / 108

We are immediately confronted with an error message:

Error from server (Forbidden): pods "overbooked" is forbidden: exceeded quota: lab-quota, requested: memory=16Mi, used:
 memory=85Mi, limited: memory=100Mi

The default request value of 16 MiB of memory that was automatically set on the Pod lets us hit the quota
which in turn prevents us from creating the Pod.

Let’s have a closer look at the quota with:

which should output the following YAML definition:

...
 status:
 hard:
 cpu: 100m
 memory: 100Mi
 used:
 cpu: 20m
 memory: 80Mi
...

The most interesting part is the quota’s status which reveals that we cannot use more than 100 MiB of
memory and that 80 MiB are already used.

Fortunately, our application can live with less memory than what the LimitRange sets. Let’s set the request
to the remaining 10 MiB:

apiVersion: v1
kind: Pod
metadata:
 name: overbooked
spec:
 containers:
 - command:
 - stress
 - --vm
 - "1"
 - --vm-bytes
 - 10M
 - --vm-hang
 - "1"
 image: quay.io/acend/stress:latest
 imagePullPolicy: Always
 name: overbooked

oc apply -f pod_overbooked.yaml --namespace <namespace>-quota

oc get quota --output yaml --namespace <namespace>-quota

- acend gmbh

71 / 108

And apply with:

Even though the limits of both Pods combined overstretch the quota, the requests do not and so the Pods
are allowed to run.

apiVersion: v1
kind: Pod
metadata:
 name: overbooked
spec:
 containers:
 - command:
 - stress
 - --vm
 - "1"
 - --vm-bytes
 - 10M
 - --vm-hang
 - "1"
 image: quay.io/acend/stress:latest
 imagePullPolicy: Always
 name: overbooked
 resources:
 limits:
 cpu: 100m
 memory: 50Mi
 requests:
 cpu: 10m
 memory: 10Mi

oc apply -f pod_overbooked.yaml --namespace <namespace>-quota

- acend gmbh

72 / 108

9.6. Init containers
A Pod can have multiple containers running apps within it, but it can also have one or more init containers,
which are run before the app container is started.

Init containers are exactly like regular containers, except:

Init containers always run to completion.
Each init container must complete successfully before the next one starts.

Check out the Init Containers documentation for more details.

Task 9.6.1: Add an init container
In 7. Attaching a database you created the example-web-app application. In this task, you are going to add an
init container which checks if the MariaDB database is ready to be used before actually starting your
example application.

Edit your existing example-web-app Deployment by changing your local deployment_example-web-app.yaml . Add the
init container into the existing Deployment (same indentation level as containers):

And then apply again with:

Let’s see what has changed by analyzing your newly created example-web-app Pod with the following command
(use oc get pod or auto-completion to get the Pod name):

You see the new init container with the name wait-for-db :

...
 spec:
 initContainers:
 - name: wait-for-db
 image: docker.io/busybox:1.28
 command:
 [
 "sh",
 "-c",
 "until nslookup mariadb.$(cat /var/run/secrets/kubernetes.io/serviceaccount/namespace).svc.cluster.local;
 do echo waiting for mydb; sleep 2; done",
]
...

oc apply -f deployment_example-web-app.yaml --namespace <namespace>

Note
This obviously only checks if there is a DNS Record for your MariaDB Service and not if the database is
ready. But you get the idea, right?

oc describe pod <pod> --namespace <namespace>

- acend gmbh

73 / 108

https://docs.openshift.com/container-platform/latest/nodes/containers/nodes-containers-init.html

...
Init Containers:
 wait-for-db:
 Container ID: docker://77e6e309c88cfe62d03ed97e8fae20704bbf547a1e717a8f699ba79d9879cca2
 Image: busybox
 Image ID: docker-pullable://busybox@sha256:141c253bc4c3fd0a201d32dc1f493bcf3fff003b6df416dea4f41046e0f37d47
 Port: <none>
 Host Port: <none>
 Command:
 sh
 -c
 until nslookup mariadb.$(cat /var/run/secrets/kubernetes.io/serviceaccount/namespace).svc.cluster.local; do echo
waiting for mydb; sleep 2; done
 State: Terminated
 Reason: Completed
 Exit Code: 0
 Started: Tue, 10 Nov 2020 21:00:24 +0100
 Finished: Tue, 10 Nov 2020 21:02:52 +0100
 Ready: True
 Restart Count: 0
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-xz2b7 (ro)
...

The init container has the State: Terminated and an Exit Code: 0 which means it was successful. That’s what
we wanted, the init container was successfully executed before our main application.

You can also check the logs of the init container with:

Which should give you something similar to:

Server: 10.43.0.10
Address 1: 10.43.0.10 kube-dns.kube-system.svc.cluster.local

Name: mariadb.acend-test.svc.cluster.local
Address 1: 10.43.243.105 mariadb.acend-test.svc.cluster.local

Deployment hooks on OpenShift
A similar concept are the so-called pre and post deployment hooks. Those hooks basically give the
possibility to execute Pods before and after a deployment is in progress.

Check out the official documentation for further information.

oc logs -c wait-for-db <pod> --namespace <namespace>

- acend gmbh

74 / 108

https://docs.openshift.com/container-platform/latest/applications/deployments/deployment-strategies.html

9.7. Sidecar containers
Let’s first have another look at the Pod’s description on the Kubernetes documentation page :

A Pod (as in a pod of whales or pea pod) is a group of one or more containers (such as Docker containers),
with shared storage/network, and a specification for how to run the containers. A Pod’s contents are
always co-located and co-scheduled, and run in a shared context. A Pod models an application-specific
“logical host” - it contains one or more application containers which are relatively tightly coupled — in a
pre-container world, being executed on the same physical or virtual machine would mean being executed
on the same logical host. The shared context of a Pod is a set of Linux namespaces, cgroups, and
potentially other facets of isolation - the same things that isolate a Docker container. Within a Pod’s
context, the individual applications may have further sub-isolations applied.

A sidecar container is a utility container in the Pod. Its purpose is to support the main container. It is
important to note that the standalone sidecar container does not serve any purpose, it must be paired with
one or more main containers. Generally, sidecar containers are reusable and can be paired with numerous
types of main containers.

In a sidecar pattern, the functionality of the main container is extended or enhanced by a sidecar container
without strong coupling between the two. Although it is always possible to build sidecar container
functionality into the main container, there are several benefits with this pattern:

Different resource profiles, i.e. independent resource accounting and allocation
Clear separation of concerns at packaging level, i.e. no strong coupling between containers
Reusability, i.e., sidecar containers can be paired with numerous “main” containers
Failure containment boundary, making it possible for the overall system to degrade gracefully
Independent testing, packaging, upgrade, deployment and if necessary rollback

Task 9.7.1: Add a Prometheus MySQL exporter as a
sidecar
In 8. Persistent storage you created a MariaDB deployment. In this task you are going to add the
Prometheus MySQL exporter to it.

Change the existing mariadb DeploymentConfig by first editing your local mariadb.yaml file. Add a new
(sidecar) container into your Deployment.

And add a new (sidecar) container to it:

and then apply the change with:

 containers:
 - ...
 - image: docker.io/prom/mysqld-exporter:v0.14.0
 name: mysqld-exporter
 env:
 - name: MYSQL_DATABASE_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-root-password
 name: mariadb
 - name: DATA_SOURCE_NAME
 value: root:$(MYSQL_DATABASE_ROOT_PASSWORD)@(localhost:3306)/
 ...

- acend gmbh

75 / 108

https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://github.com/prometheus/mysqld_exporter

Your Pod now has two running containers. Verify this with:

The output should look similar to this:

NAME READY STATUS RESTARTS AGE
mariadb-65559644c9-cdjjk 2/2 Running 0 5m35s

Note the READY column which shows you 2 ready containers.

You can get the logs from the mysqld-exporter with:

Which gives you an output similar to this:

time="2020-05-10T11:31:02Z" level=info msg="Starting mysqld_exporter (version=0.12.1, branch=HEAD, revision=48667bf7c3b
438b5e93b259f3d17b70a7c9aff96)" source="mysqld_exporter.go:257"
time="2020-05-10T11:31:02Z" level=info msg="Build context (go=go1.12.7, user=root@0b3e56a7bc0a, date=20190729-12:35:58)
" source="mysqld_exporter.go:258"
time="2020-05-10T11:31:02Z" level=info msg="Enabled scrapers:" source="mysqld_exporter.go:269"
time="2020-05-10T11:31:02Z" level=info msg=" --collect.global_variables" source="mysqld_exporter.go:273"
time="2020-05-10T11:31:02Z" level=info msg=" --collect.slave_status" source="mysqld_exporter.go:273"
time="2020-05-10T11:31:02Z" level=info msg=" --collect.global_status" source="mysqld_exporter.go:273"
time="2020-05-10T11:31:02Z" level=info msg=" --collect.info_schema.query_response_time" source="mysqld_exporter.go:273"
time="2020-05-10T11:31:02Z" level=info msg=" --collect.info_schema.innodb_cmp" source="mysqld_exporter.go:273"
time="2020-05-10T11:31:02Z" level=info msg=" --collect.info_schema.innodb_cmpmem" source="mysqld_exporter.go:273"
time="2020-05-10T11:31:02Z" level=info msg="Listening on :9104" source="mysqld_exporter.go:283"

By using the port-forward subcommand, you can even have a look at the Prometheus metrics:

And then use curl to check the mysqld_exporter metrics with:

oc apply -f mariadb.yaml --namespace <namespace>

oc get pod --namespace <namespace>

oc logs <pod> -c mysqld-exporter --namespace <namespace>

oc port-forward <pod> 9104 --namespace <namespace>

curl http://localhost:9104/metrics

- acend gmbh

76 / 108

10. Security

10.1. Network policies

Network Policies
One CNI function is the ability to enforce network policies and implement an in-cluster zero-trust container
strategy. Network policies are a default Kubernetes object for controlling network traffic, but a CNI such as
Cilium or Calico is required to enforce them. We will demonstrate traffic blocking with our simple app.

Task 10.1.1: Deploy a simple frontend/backend application
First we need a simple application to show the effects on Kubernetes network policies. Let’s have a look at
the following resource definitions:

Note
If you are not yet familiar with Kubernetes Network Policies we suggest going to the Kubernetes
Documentation .

Warning
For this lab to work it is vital that you use the namespace <username>-netpol !

apiVersion: apps/v1
kind: Deployment
metadata:
 name: frontend
 labels:
 app: frontend
spec:
 replicas: 1
 selector:
 matchLabels:
 app: frontend
 template:
 metadata:
 labels:
 app: frontend
 spec:
 containers:
 - name: frontend-container
 image: docker.io/byrnedo/alpine-curl:0.1.8
 imagePullPolicy: IfNotPresent
 command: ["/bin/ash", "-c", "sleep 1000000000"]

apiVersion: apps/v1
kind: Deployment
metadata:
 name: not-frontend
 labels:
 app: not-frontend
spec:
 replicas: 1
 selector:
 matchLabels:
 app: not-frontend
 template:
 metadata:

- acend gmbh

77 / 108

https://cilium.io/
https://www.tigera.io/project-calico/
https://kubernetes.io/docs/concepts/services-networking/network-policies/

The application consists of two client deployments (frontend and not-frontend) and one backend deployment
(backend). We are going to send requests from the frontend and not-frontend pods to the backend pod.

Create a file simple-app.yaml with the above content.

Deploy the app:

this gives you the following output:

 labels:
 app: not-frontend
 spec:
 containers:
 - name: not-frontend-container
 image: docker.io/byrnedo/alpine-curl:0.1.8
 imagePullPolicy: IfNotPresent
 command: ["/bin/ash", "-c", "sleep 1000000000"]

apiVersion: apps/v1
kind: Deployment
metadata:
 name: backend
 labels:
 app: backend
spec:
 replicas: 1
 selector:
 matchLabels:
 app: backend
 template:
 metadata:
 labels:
 app: backend
 spec:
 containers:
 - name: backend-container
 env:
 - name: PORT
 value: "8080"
 ports:
 - containerPort: 8080
 image: docker.io/cilium/json-mock:1.2
 imagePullPolicy: IfNotPresent

apiVersion: v1
kind: Service
metadata:
 name: backend
 labels:
 app: backend
spec:
 type: ClusterIP
 selector:
 app: backend
 ports:
 - name: http
 port: 8080

Warning
Remember to use the namespace <username>-netpol , otherwise this lab will not work!

oc apply -f simple-app.yaml --namespace <namespace>-netpol

- acend gmbh

78 / 108

deployment.apps/frontend created
deployment.apps/not-frontend created
deployment.apps/backend created
service/backend created

Verify with the following command that everything is up and running:

NAME READY STATUS RESTARTS AGE
pod/backend-65f7c794cc-b9j66 1/1 Running 0 3m17s
pod/frontend-76fbb99468-mbzcm 1/1 Running 0 3m17s
pod/not-frontend-8f467ccbd-cbks8 1/1 Running 0 3m17s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/backend ClusterIP 10.97.228.29 <none> 8080/TCP 3m17s
service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 45m

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/backend 1/1 1 1 3m17s
deployment.apps/frontend 1/1 1 1 3m17s
deployment.apps/not-frontend 1/1 1 1 3m17s

NAME DESIRED CURRENT READY AGE
replicaset.apps/backend-65f7c794cc 1 1 1 3m17s
replicaset.apps/frontend-76fbb99468 1 1 1 3m17s
replicaset.apps/not-frontend-8f467ccbd 1 1 1 3m17s

Let us make life a bit easier by storing the pods name into an environment variable so we can reuse it later
again:

Task 10.1.2: Verify connectivity
Now we generate some traffic as a baseline test.

and

This will execute a simple curl call from the frontend and not-frondend application to the backend application:

oc get all --namespace <namespace>-netpol

export FRONTEND=$(oc get pods -l app=frontend --namespace <namespace>-netpol -o jsonpath='{.items[0].metadata.name}')
echo ${FRONTEND}
export NOT_FRONTEND=$(oc get pods -l app=not-frontend --namespace <namespace>-netpol -o jsonpath='{.items[0].metadata.n
ame}')
echo ${NOT_FRONTEND}

oc exec --namespace <namespace>-netpol -ti ${FRONTEND} -- curl -I --connect-timeout 5 backend:8080

oc exec --namespace <namespace>-netpol -ti ${NOT_FRONTEND} -- curl -I --connect-timeout 5 backend:8080

- acend gmbh

79 / 108

Frontend
HTTP/1.1 200 OK
X-Powered-By: Express
Vary: Origin, Accept-Encoding
Access-Control-Allow-Credentials: true
Accept-Ranges: bytes
Cache-Control: public, max-age=0
Last-Modified: Sat, 26 Oct 1985 08:15:00 GMT
ETag: W/"83d-7438674ba0"
Content-Type: text/html; charset=UTF-8
Content-Length: 2109
Date: Tue, 23 Nov 2021 12:50:44 GMT
Connection: keep-alive

Not Frontend
HTTP/1.1 200 OK
X-Powered-By: Express
Vary: Origin, Accept-Encoding
Access-Control-Allow-Credentials: true
Accept-Ranges: bytes
Cache-Control: public, max-age=0
Last-Modified: Sat, 26 Oct 1985 08:15:00 GMT
ETag: W/"83d-7438674ba0"
Content-Type: text/html; charset=UTF-8
Content-Length: 2109
Date: Tue, 23 Nov 2021 12:50:44 GMT
Connection: keep-alive

and we see, both applications can connect to the backend application.

Until now ingress and egress policy enforcement are still disabled on all of our pods because no network
policy has been imported yet selecting any of the pods. Let us change this.

Task 10.1.3: Deny traffic with a Network Policy
We block traffic by applying a network policy. Create a file backend-ingress-deny.yaml with the following content:

The policy will deny all ingress traffic as it is of type Ingress but specifies no allow rule, and will be applied
to all pods with the app=backend label thanks to the podSelector.

Ok, then let’s create the policy with:

and you can verify the created NetworkPolicy with:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: backend-ingress-deny
spec:
 podSelector:
 matchLabels:
 app: backend
 policyTypes:
 - Ingress

oc apply -f backend-ingress-deny.yaml --namespace <namespace>-netpol

- acend gmbh

80 / 108

which gives you an output similar to this:

NAME POD-SELECTOR AGE
backend-ingress-deny app=backend 2s

Task 10.1.4: Verify connectivity again
We can now execute the connectivity check again:

and

but this time you see that the frontend and not-frontend application cannot connect anymore to the backend :

Frontend
curl: (28) Connection timed out after 5001 milliseconds
command terminated with exit code 28
Not Frontend
curl: (28) Connection timed out after 5001 milliseconds
command terminated with exit code 28

The network policy correctly switched the default ingress behavior from default allow to default deny.

Let’s now selectively re-allow traffic again, but only from frontend to backend.

Task 10.1.5: Allow traffic from frontend to backend
We can do it by crafting a new network policy manually, but we can also use the Network Policy Editor made
by Cilium to help us out:

oc get netpol --namespace <namespace>-netpol

oc exec --namespace <namespace>-netpol -ti ${FRONTEND} -- curl -I --connect-timeout 5 backend:8080

oc exec --namespace <namespace>-netpol -ti ${NOT_FRONTEND} -- curl -I --connect-timeout 5 backend:8080

- acend gmbh

81 / 108

Above you see our original policy, we create an new one with the editor now.

Go to https://editor.cilium.io/
Name the network policy to backend-allow-ingress-frontend (using the Edit button in the center).
add app=backend as Pod Selector
Set Ingress to default deny

On the ingress side, add app=frontend as podSelector for pods in the same Namespace.

- acend gmbh

82 / 108

https://editor.cilium.io/

Inspect the ingress flow colors: the policy will deny all ingress traffic to pods labeled app=backend , except
for traffic coming from pods labeled app=frontend .

Copy the policy YAML into a file named backend-allow-ingress-frontend.yaml . Make sure to use the
Networkpolicy and not the CiliumNetworkPolicy !

The file should look like this:

- acend gmbh

83 / 108

Apply the new policy:

and then execute the connectivity test again:

and

This time, the frontend application is able to connect to the backend but the not-frontend application still
cannot connect to the backend :

Frontend
HTTP/1.1 200 OK
X-Powered-By: Express
Vary: Origin, Accept-Encoding
Access-Control-Allow-Credentials: true
Accept-Ranges: bytes
Cache-Control: public, max-age=0
Last-Modified: Sat, 26 Oct 1985 08:15:00 GMT
ETag: W/"83d-7438674ba0"
Content-Type: text/html; charset=UTF-8
Content-Length: 2109
Date: Tue, 23 Nov 2021 13:08:27 GMT
Connection: keep-alive

Not Frontend
curl: (28) Connection timed out after 5001 milliseconds
command terminated with exit code 28

Note that this is working despite the fact we did not delete the previous backend-ingress-deny policy:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: "backend-allow-ingress-frontend"
spec:
 podSelector:
 matchLabels:
 app: backend
 policyTypes:
 - Ingress
 ingress:
 - from:
 - podSelector:
 matchLabels:
 app: frontend

oc apply -f backend-allow-ingress-frontend.yaml --namespace <namespace>-netpol

oc exec --namespace <namespace>-netpol -ti ${FRONTEND} -- curl -I --connect-timeout 5 backend:8080

oc exec --namespace <namespace>-netpol -ti ${NOT_FRONTEND} -- curl -I --connect-timeout 5 backend:8080

- acend gmbh

84 / 108

NAME POD-SELECTOR AGE
backend-allow-ingress-frontend app=backend 2m7s
backend-ingress-deny app=backend 12m

Network policies are additive. Just like with firewalls, it is thus a good idea to have default DENY policies and
then add more specific ALLOW policies as needed.

oc get netpol --namespace <namespace>-netpol

- acend gmbh

85 / 108

11. Deployment strategies
In this lab, we are going to have a look at the different Deployment strategies.

This document should give you a good start. For more details, have a look at the examples or use this demo
in which the different strategies are implemented as Helm charts.

Task 11.1: Apply deployment strategies
Apply some deployment strategies to the example from the Scaling .

- acend gmbh

86 / 108

https://www.cncf.io/wp-content/uploads/2018/03/CNCF-Presentation-Template-K8s-Deployment.pdf
https://github.com/ContainerSolutions/k8s-deployment-strategies
https://github.com/acend/deployment-strategies-demo
file:///scaling

12. Helm
Helm is a Cloud Native Foundation project to define, install and manage applications in Kubernetes.

tl;dr
Helm is a Package Manager for Kubernetes

package multiple K8s resources into a single logical deployment unit
… but it’s not just a Package Manager

Helm is a Deployment Management for Kubernetes

do a repeatable deployment
manage dependencies: reuse and share
manage multiple configurations
update, rollback and test application deployments

12.1. Helm overview
Ok, let’s start with Helm. First, you have to understand the following 3 Helm concepts: Chart, Repository
and Release.

A Chart is a Helm package. It contains all of the resource definitions necessary to run an application, tool,
or service inside of a Kubernetes cluster. Think of it like the Kubernetes equivalent of a Homebrew formula,
an Apt dpkg, or a Yum RPM file.

A Repository is the place where charts can be collected and shared. It’s like Perl’s CPAN archive or the
Fedora Package Database, but for Kubernetes packages.

A Release is an instance of a chart running in a Kubernetes cluster. One chart can often be installed many
times in the same cluster. Each time it is installed, a new release is created. Consider a MySQL chart. If you
want two databases running in your cluster, you can install that chart twice. Each one will have its own
release, which will in turn have its own release name.

With these concepts in mind, we can now explain Helm like this:

Helm installs charts into Kubernetes, creating a new release for each installation. To find new charts, you
can search Helm chart repositories.

- acend gmbh

87 / 108

https://github.com/helm/helm
https://www.cncf.io/

12.2. CLI installation
This guide shows you how to install the helm CLI tool. helm can be installed either from source or from pre-
built binary releases. We are going to use the pre-built releases. helm binaries can be found on Helm’s
release page for the usual variety of operating systems.

Task 12.2.1: Install CLI
Install the CLI for your Operating System

1. Download the latest release
2. Unpack it (e.g. tar -zxvf <filename>)
3. Copy to the correct location

Linux: Find the helm binary in the unpacked directory and move it to its desired destination (e.g. mv

linux-amd64/helm ~/.local/bin/)
The desired destination should be listed in your $PATH environment variable (echo $PATH)

macOS: Find the helm binary in the unpacked directory and move it to its desired destination (e.g.
mv darwin-amd64/helm ~/bin/)

The desired destination should be listed in your $PATH environment variable (echo $PATH)
Windows: Find the helm binary in the unpacked directory and move it to its desired destination

The desired destination should be listed in your $PATH environment variable (echo $PATH)

Task 12.2.2: Verify
To verify, run the following command and check if Version is what you expected:

The output is similar to this:

From here on you should be able to run the client.

Warning
If you do this training in our acend web based environment, no installation is required.

helm version

version.BuildInfo{Version:"v3.10.1", GitCommit:"9f88ccb6aee40b9a0535fcc7efea6055e1ef72c9", GitTreeState:"clean", GoVers
ion:"go1.18.7"}

- acend gmbh

88 / 108

https://github.com/helm/helm/releases
https://github.com/helm/helm/releases

12.3. Create a chart
In this lab we are going to create our very first Helm chart and deploy it.

Task 12.3.1: Create Chart
First, let’s create our chart. Open your favorite terminal and make sure you’re in the workspace for this lab,
e.g. cd ~/<workspace-kubernetes-training> :

You will now find a mychart directory with the newly created chart. It already is a valid and fully functional
chart which deploys an nginx instance. Have a look at the generated files and their content. For an
explanation of the files, visit the Helm Developer Documentation . In a later section you’ll find all the
information about Helm templates.

The default image freshly created chart deploys is a simple nginx image listening on port 80 .

Since OpenShift doesn’t allow to run containers as root by default, we need to change the default image to
an unprivileged one (docker.io/nginxinc/nginx-unprivileged) and also change the containerPort to 8080 .

Change the image in the mychart/values.yaml

And then change the containerPort in the mychart/templates/deployment.yaml

Task 12.3.2: Install Release
Before actually deploying our generated chart, we can check the (to be) generated Kubernetes resources
with the following command:

helm create mychart

...
image:
 repository: docker.io/nginxinc/nginx-unprivileged
 pullPolicy: IfNotPresent
 # Overrides the image tag whose default is the chart appVersion.
 tag: "latest"
...

...
ports:
- name: http
 containerPort: 8080
 protocol: TCP
...

helm install --dry-run --debug --namespace <namespace> myfirstrelease ./mychart

- acend gmbh

89 / 108

https://docs.helm.sh/developing_charts/#the-chart-file-structure

Finally, the following command creates a new release and deploys the application:

With oc get pods --namespace <namespace> you should see a new Pod:

You can list the newly created Helm release with the following command:

Task 12.3.3: Expose Application
Our freshly deployed nginx is not yet accessible from outside the OpenShift cluster. To expose it, we have to
make sure a so called ingress resource will be deployed as well.

Also make sure the application is accessible via TLS.

A look into the file templates/ingress.yaml reveals that the rendering of the ingress and its values is
configurable through values(values.yaml):

helm install --namespace <namespace> myfirstrelease ./mychart

NAME READY STATUS RESTARTS AGE
myfirstrelease-mychart-6d4956b75-ng8x4 1/1 Running 0 2m21s

helm ls --namespace <namespace>

- acend gmbh

90 / 108

Thus, we need to change this value inside our mychart/values.yaml file. This is also where we enable the TLS
part:

{{- if .Values.ingress.enabled -}}
{{- $fullName := include "mychart.fullname" . -}}
{{- $svcPort := .Values.service.port -}}
{{- if and .Values.ingress.className (not (semverCompare ">=1.18-0" .Capabilities.KubeVersion.GitVersion)) }}
 {{- if not (hasKey .Values.ingress.annotations "kubernetes.io/ingress.class") }}
 {{- $_ := set .Values.ingress.annotations "kubernetes.io/ingress.class" .Values.ingress.className}}
 {{- end }}
{{- end }}
{{- if semverCompare ">=1.19-0" .Capabilities.KubeVersion.GitVersion -}}
apiVersion: networking.k8s.io/v1
{{- else if semverCompare ">=1.14-0" .Capabilities.KubeVersion.GitVersion -}}
apiVersion: networking.k8s.io/v1beta1
{{- else -}}
apiVersion: extensions/v1beta1
{{- end }}
kind: Ingress
metadata:
 name: {{ $fullName }}
 labels:
 {{- include "mychart.labels" . | nindent 4 }}
 {{- with .Values.ingress.annotations }}
 annotations:
 {{- toYaml . | nindent 4 }}
 {{- end }}
spec:
 {{- if and .Values.ingress.className (semverCompare ">=1.18-0" .Capabilities.KubeVersion.GitVersion) }}
 ingressClassName: {{ .Values.ingress.className }}
 {{- end }}
 {{- if .Values.ingress.tls }}
 tls:
 {{- range .Values.ingress.tls }}
 - hosts:
 {{- range .hosts }}
 - {{ . | quote }}
 {{- end }}
 secretName: {{ .secretName }}
 {{- end }}
 {{- end }}
 rules:
 {{- range .Values.ingress.hosts }}
 - host: {{ .host | quote }}
 http:
 paths:
 {{- range .paths }}
 - path: {{ .path }}
 {{- if and .pathType (semverCompare ">=1.18-0" $.Capabilities.KubeVersion.GitVersion) }}
 pathType: {{ .pathType }}
 {{- end }}
 backend:
 {{- if semverCompare ">=1.19-0" $.Capabilities.KubeVersion.GitVersion }}
 service:
 name: {{ $fullName }}
 port:
 number: {{ $svcPort }}
 {{- else }}
 serviceName: {{ $fullName }}
 servicePort: {{ $svcPort }}
 {{- end }}
 {{- end }}
 {{- end }}
{{- end }}

Note
Make sure to replace the <namespace> and <appdomain> accordingly.

- acend gmbh

91 / 108

Apply the change by upgrading our release:

This will result in something similar to:

Release "myfirstrelease" has been upgraded. Happy Helming!
NAME: myfirstrelease
LAST DEPLOYED: Wed Dec 2 14:44:42 2020
NAMESPACE: <namespace>
STATUS: deployed
REVISION: 2
NOTES:
1. Get the application URL by running these commands:
 https://<namespace>.<appdomain>/

Check whether the ingress was successfully deployed by accessing the URL https://mychart-<namespace>.

<appdomain>/

Task 12.3.4: Overwrite value using commandline
param
An alternative way to set or overwrite values for charts we want to deploy is the --set name=value parameter.
This parameter can be used when installing a chart as well as upgrading.

Update the replica count of your nginx Deployment to 2 using --set name=value

Solution

[...]
ingress:
 enabled: true
 className: ""
 # as we learned in previous labs, OpenShift uses Routes instead of Ingresses
 # to let OpenShift automatically generate the corresponding Route, we need the following annotation. more information
:
 # https://docs.openshift.com/container-platform/latest/networking/routes/route-configuration.html#nw-ingress-creating
-a-route-via-an-ingress_route-configuration
 annotations:
 route.openshift.io/termination: "edge"
 hosts:
 - host: mychart-<namespace>.<appdomain>
 paths:
 - path: /
 pathType: ImplementationSpecific
[...]

Note
Make sure to set the proper value as hostname. <appdomain> will be provided by the trainer.

helm upgrade --namespace <namespace> myfirstrelease ./mychart

helm upgrade --namespace <namespace> --set replicaCount=2 myfirstrelease ./mychart

- acend gmbh

92 / 108

Values that have been set using --set can be reset by helm upgrade with --reset-values .

Task 12.3.5: Values
Have a look at the values.yaml file in your chart and study all the possible configuration params introduced in
a freshly created chart.

Task 12.3.6: Remove release
To remove an application, simply remove the Helm release with the following command:

Do this with our deployed release. With oc get pods --namespace <namespace> you should no longer see your
application Pod.

helm uninstall myfirstrelease --namespace <namespace>

- acend gmbh

93 / 108

12.4. Complex example
In this extended lab, we are going to deploy an existing, more complex application with a Helm chart from
the Artifact Hub.

Artifact Hub
Check out Artifact Hub where you’ll find a huge number of different Helm charts. For this lab, we’ll use the
WordPress chart by Bitnami , a publishing platform for building blogs and websites.

WordPress
As this WordPress Helm chart is published in Bitnami’s Helm repository, we’re first going to add it to our
local repo list:

Let’s check if that worked:

NAME URL
bitnami https://charts.bitnami.com/bitnami

Now look at the available configuration for this Helm chart. Usually you can find it in the values.yaml or in the
chart’s readme file. You can also check it on its Artifact Hub page .

We are going to override some of the values. For that purpose, create a new values.yaml file locally on your
workstation (e.g. ~/<workspace>/values.yaml) with the following content:

helm repo add bitnami https://charts.bitnami.com/bitnami

helm repo list

- acend gmbh

94 / 108

https://artifacthub.io/
https://artifacthub.io/packages/helm/bitnami/wordpress
https://github.com/bitnami/charts/blob/master/bitnami/wordpress/values.yaml
https://artifacthub.io/packages/helm/bitnami/wordpress

If you look inside the Chart.yaml file of the WordPress chart, you’ll see a dependency to the MariaDB Helm
chart . All the MariaDB values are used by this dependent Helm chart and the chart is automatically
deployed when installing WordPress.

The Chart.yaml file allows us to define dependencies on other charts. In our Wordpress chart we use the
Chart.yaml to add a mariadb to store the WordPress data in.

Helm’s best practices suggest to use version ranges instead of a fixed version whenever possible. The
suggested default therefore is patch-level version match:

version: ~3.5.7

This is e.g. equivalent to >= 3.5.7, < 3.6.0 Check this SemVer readme chapter for more information on
version ranges.

persistence:
 size: 1Gi
service:
 type: ClusterIP
updateStrategy:
 type: Recreate

podSecurityContext:
 enabled: false
containerSecurityContext:
 enabled: false

ingress:
 enabled: true
 hostname: wordpress-<namespace>.<appdomain>
 extraTls:
 - hosts:
 - wordpress-<namespace>.<appdomain>

mariadb:
 primary:
 persistence:
 size: 1Gi

 podSecurityContext:
 enabled: false
 containerSecurityContext:
 enabled: false

Note
Make sure to set the proper value as hostname. <appdomain> will be provided by the trainer.

dependencies:
 - condition: mariadb.enabled
 name: mariadb
 repository: https://charts.bitnami.com/bitnami
 version: 9.x.x

Note
For more details on how to manage dependencies, check out the Helm Dependencies Documentation .

- acend gmbh

95 / 108

https://github.com/bitnami/charts/blob/master/bitnami/wordpress/Chart.yaml
https://github.com/bitnami/charts/tree/master/bitnami/mariadb
https://helm.sh/docs/chart_best_practices/
https://github.com/Masterminds/semver#checking-version-constraints
https://helm.sh/docs/chart_best_practices/dependencies/

Subcharts are an alternative way to define dependencies within a chart: A chart may contain another chart
(inside of its charts/ directory) upon which it depends. As a result, when installing the chart, it will install all
of its dependencies from the charts/ directory.

We are now going to deploy the application in a specific version (which is not the latest release on purpose).
Also note that we define our custom values.yaml file with the -f parameter:

Look for the newly created resources with helm ls and oc get deploy,pod,ingress,pvc :

which gives you:

and

which gives you:

In order to check the values used in a given release, execute:

which gives you:

helm install wordpress bitnami/wordpress -f values.yaml --namespace <namespace>

helm ls --namespace <namespace>

NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
wordpress <namespace> 1 2021-03-25 14:27:38.231722961 +0100 CET deployed wordpress-10.7.1 5.7.0

oc get deploy,pod,ingress,pvc --namespace <namespace>

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/wordpress 1/1 1 1 2m6s

NAME READY STATUS RESTARTS AGE
pod/wordpress-6bf6df9c5d-w4fpx 1/1 Running 0 2m6s
pod/wordpress-mariadb-0 1/1 Running 0 2m6s

NAME HOSTS ADDRESS PORTS AGE
ingress.extensions/wordpress wordpress-<namespace>.<appdomain> 10.100.1.10 80 2m6s

NAME STATUS VOLUME CAPACITY ACCESS
MODES STORAGECLASS AGE
persistentvolumeclaim/data-wordpress-mariadb-0 Bound pvc-859fe3b4-b598-4f86-b7ed-a3a183f700fd 1Gi RWO
 cloudscale-volume-ssd 2m6s
persistentvolumeclaim/wordpress Bound pvc-83ebf739-0b0e-45a2-936e-e925141a0d35 1Gi RWO
 cloudscale-volume-ssd 2m7s

helm get values wordpress --namespace <namespace>

- acend gmbh

96 / 108

As soon as all deployments are ready (meaning pods wordpress and mariadb are running) you can open the
application with the URL from your Ingress resource defined in values.yaml .

Upgrade
We are now going to upgrade the application to a newer Helm chart version. When we installed the Chart, a
couple of secrets were needed during this process. In order to do the upgrade of the Chart now, we need to
provide those secrets to the upgrade command, to be sure no sensitive data will be overwritten:

wordpressPassword
mariadb.auth.rootPassword
mariadb.auth.password

Use the following commands to gather the secrets and store them in environment variables. Make sure to
replace <namespace> with your current value.

USER-SUPPLIED VALUES:
containerSecurityContext:
 enabled: false
ingress:
 enabled: true
 hostname: wordpress-<namespace>.<appdomain>
 extraTls:
 - hosts:
 - wordpress-<namespace>.<appdomain>
mariadb:
 primary:
 containerSecurityContext:
 enabled: false
 persistence:
 size: 1Gi
 podSecurityContext:
 enabled: false
persistence:
 size: 1Gi
podSecurityContext:
 enabled: false
service:
 type: ClusterIP
updateStrategy:
 type: Recreate

Note
This is specific to the wordpress Bitami Chart, and might be different when installing other Charts.

export WORDPRESS_PASSWORD=$(oc get secret wordpress -o jsonpath="{.data.wordpress-password}" --namespace <namespace> |
base64 --decode)

export MARIADB_ROOT_PASSWORD=$(oc get secret wordpress-mariadb -o jsonpath="{.data.mariadb-root-password}" --namespace
<namespace> | base64 --decode)

export MARIADB_PASSWORD=$(oc get secret wordpress-mariadb -o jsonpath="{.data.mariadb-password}" --namespace <namespace
> | base64 --decode)

- acend gmbh

97 / 108

Then do the upgrade with the following command:

And then observe the changes in your WordPress and MariaDB Apps

Cleanup

Additional Task
Study the Helm best practices as an optional and additional task.

helm upgrade -f values.yaml --set wordpressPassword=$WORDPRESS_PASSWORD --set mariadb.auth.rootPassword=$MARIADB_ROOT_P
ASSWORD --set mariadb.auth.password=$MARIADB_PASSWORD wordpress bitnami/wordpress --namespace <namespace>

helm uninstall wordpress --namespace <namespace>

- acend gmbh

98 / 108

https://helm.sh/docs/chart_best_practices/

13. Kustomize
Kustomize is a tool to manage YAML configurations for Kubernetes objects in a declarative and reusable
manner. In this lab, we will use Kustomize to deploy the same app for two different environments.

Installation
Kustomize can be used in two different ways:

As a standalone kustomize binary, downloadable from kubernetes.io
With the parameter --kustomize or -k in certain oc subcommands such as apply or create

Usage
The main purpose of Kustomize is to build configurations from a predefined file structure (which will be
introduced in the next section):

The same can be achieved with oc :

The next step is to apply this configuration to the OpenShift cluster:

Or in one oc command with the parameter -k instead of -f :

Task 13.1: Prepare a Kustomize config
We are going to deploy a simple application:

The Deployment starts an application based on nginx
A Service exposes the Deployment

Note
You might get a different behaviour depending on which variant you use. The reason for this is that the
version built into oc is usually older than the standalone binary.

kustomize build <dir>

oc kustomize <dir>

kustomize build <dir> | oc apply -f -

oc apply -k <dir>

- acend gmbh

99 / 108

https://kustomize.io/
https://kubectl.docs.kubernetes.io/installation/kustomize/

The application will be deployed for two different example environments, integration and production

Kustomize allows inheriting Kubernetes configurations. We are going to use this to create a base
configuration and then override it for the different environments. Note that Kustomize does not use
templating. Instead, smart patch and extension mechanisms are used on plain YAML manifests to keep
things as simple as possible.

Get the example config
Find the needed resource files inside the folder content/en/docs/kustomize/kustomize of the techlab github
repository. Clone the repository or get the content as zip

Change to the folder content/en/docs/kustomize/kustomize to execute the kustomize commands.

File structure
The structure of a Kustomize configuration typically looks like this:

Base
Let’s have a look at the base directory first which contains the base configuration. There’s a deployment.yaml

with the following content:

Note
Commands for git checkout and folder switch:

git clone https://github.com/acend/kubernetes-basics-training.git
cd kubernetes-basics-training/content/en/docs/kustomize/kustomize/

.
├── base
│ ├── deployment.yaml
│ ├── kustomization.yaml
│ └── service.yaml
└── overlays
 ├── production
 │ ├── deployment-patch.yaml
 │ ├── kustomization.yaml
 │ └── service-patch.yaml
 └── staging
 ├── deployment-patch.yaml
 ├── kustomization.yaml
 └── service-patch.yaml

- acend gmbh

100 / 108

https://github.com/acend/kubernetes-basics-training
https://github.com/acend/kubernetes-basics-training/archive/refs/heads/main.zip

There’s also a Service for our Deployment in the corresponding base/service.yaml :

And there’s an additional base/kustomization.yaml which is used to configure Kustomize:

It references the previous manifests service.yaml and deployment.yaml and makes them part of our base
configuration.

Overlays
Now let’s have a look at the other directory which is called overlays . It contains two subdirectories staging

and production which both contain a kustomization.yaml with almost the same content.

overlays/staging/kustomization.yaml :

apiVersion: apps/v1
kind: Deployment
metadata:
 name: kustomize-app
spec:
 selector:
 matchLabels:
 app: kustomize-app
 template:
 metadata:
 labels:
 app: kustomize-app
 spec:
 containers:
 - name: kustomize-app
 image: quay.io/acend/example-web-go
 env:
 - name: APPLICATION_NAME
 value: app-base
 command:
 - sh
 - -c
 - |-
 set -e
 /bin/echo "My name is $APPLICATION_NAME"
 /usr/local/bin/go
 ports:
 - name: http
 containerPort: 80
 protocol: TCP

apiVersion: v1
kind: Service
metadata:
 name: kustomize-app
spec:
 ports:
 - port: 80
 targetPort: 80
 selector:
 app: kustomize-app

resources:
 - service.yaml
 - deployment.yaml

- acend gmbh

101 / 108

overlays/production/kustomization.yaml :

Only the first key nameSuffix differs.

In both cases, the kustomization.yaml references our base configuration. However, the two directories contain
two different deployment-patch.yaml files which patch the deployment.yaml from our base configuration.

overlays/staging/deployment-patch.yaml :

overlays/production/deployment-patch.yaml :

nameSuffix: -staging
bases:
 - ../../base
patchesStrategicMerge:
 - deployment-patch.yaml
 - service-patch.yaml

nameSuffix: -production
bases:
 - ../../base
patchesStrategicMerge:
 - deployment-patch.yaml
 - service-patch.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: kustomize-app
spec:
 selector:
 matchLabels:
 app: kustomize-app-staging
 template:
 metadata:
 labels:
 app: kustomize-app-staging
 spec:
 containers:
 - name: kustomize-app
 env:
 - name: APPLICATION_NAME
 value: kustomize-app-staging

- acend gmbh

102 / 108

The main difference here is that the environment variable APPLICATION_NAME is set differently. The app label
also differs because we are going to deploy both Deployments into the same Namespace.

The same applies to our Service. It also comes in two customizations so that it matches the corresponding
Deployment in the same Namespace.

overlays/staging/service-patch.yaml :

overlays/production/service-patch.yaml :

Prepare the files as described above in a local directory of your choice.

Task 13.2: Deploy with Kustomize
We are now ready to deploy both apps for the two different environments. For simplicity, we will use the
same Namespace.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: kustomize-app
spec:
 selector:
 matchLabels:
 app: kustomize-app-production
 template:
 metadata:
 labels:
 app: kustomize-app-production
 spec:
 containers:
 - name: kustomize-app
 env:
 - name: APPLICATION_NAME
 value: kustomize-app-production

apiVersion: v1
kind: Service
metadata:
 name: kustomize-app
spec:
 selector:
 app: kustomize-app-staging

apiVersion: v1
kind: Service
metadata:
 name: kustomize-app
spec:
 selector:
 app: kustomize-app-production

Note
All files mentioned above are also directly accessible from GitHub .

- acend gmbh

103 / 108

https://github.com/acend/kubernetes-basics-training/tree/master/content/en/docs/12/kustomize

service/kustomize-app-staging created
deployment.apps/kustomize-app-staging created

As you can see, we now have two deployments and services deployed. Both of them use the same base
configuration. However, they have a specific configuration on their own as well.

Let’s verify this. Our app writes a corresponding log entry that we can use for analysis:

NAME READY STATUS RESTARTS AGE
kustomize-app-production-74c7bdb7d-8cccd 1/1 Running 0 2m1s
kustomize-app-staging-7967885d5b-qp6l8 1/1 Running 0 5m33s

My name is kustomize-app-staging

My name is kustomize-app-production

Further information
Kustomize has more features of which we just covered a couple. Please refer to the docs for more
information.

Kustomize documentation: https://kubernetes-sigs.github.io/kustomize/
API reference: https://kubernetes-sigs.github.io/kustomize/api-reference/
Another kustomization.yaml reference: https://kubectl.docs.kubernetes.io/pages/reference/kustomize.html

oc apply -k overlays/staging --namespace <namespace>

oc apply -k overlays/production --namespace <namespace>

service/kustomize-app-production created
deployment.apps/kustomize-app-production created

oc get pods --namespace <namespace>

oc logs kustomize-app-staging-7967885d5b-qp6l8

oc logs kustomize-app-production-74c7bdb7d-8cccd

- acend gmbh

104 / 108

https://kubernetes-sigs.github.io/kustomize/
https://kubernetes-sigs.github.io/kustomize/api-reference/
https://kubectl.docs.kubernetes.io/pages/reference/kustomize.html

Examples: https://github.com/kubernetes-sigs/kustomize/tree/master/examples
- acend gmbh

105 / 108

https://github.com/kubernetes-sigs/kustomize/tree/master/examples

14. Kubernetes and OpenShift differences
Even though OpenShift is based on Kubernetes, there are some important differences. As a concluding lab,
we are going to have a look at these differences.

Life cycle and versions
Red Hat releases a new OpenShift 4 release every six months, as is the case with Kubernetes. The
important difference however is that the latest OpenShift release is always based on the second latest
Kubernetes release.

Keep this in mind especially when using Kubernetes’ documentation e.g. about some resource type.

You can find out more about OpenShift’s life cycle policy on this page .

Resource types
OpenShift extends the Kubernetes API to support certain additional resource types.

Namespaces and Projects
In 2. First steps you created your first Project on OpenShift. You won’t find the concept of a “Project” in
Kubernetes except in other Kubernetes distributions, specifically in Rancher.

A Project in OpenShift is based on the Namespace resource type. When creating a Project in OpenShift, a
Namespace with the exact same name is created in the background.

The probably only reason for the Project resource type to exist is that OpenShift provides additional
administrative controls for Projects. OpenShift users can, e.g., be prevented from creating their own
Namespaces/Projects .

Ingresses and Routes
Ingresses and Routes enable you to make an application reachable to the outside of OpenShift. They
contain the configuration needed and signal the platform that a certain service needs to be accessible to
the outside world.

Red Hat introduced the concept of Routes in OpenShift 3.0 and still uses it up until now. Support for the
Ingress resource type was introduced in OpenShift 3.10 which means that you can use both Routes and
Ingresses as you see fit. Of course both have their advantages and disadvantages.

One of the obvious advantages of the Ingress resource type is its compatibility with other Kubernetes
distributions. However, different kinds of Ingress controllers support different features making this
statement semisolid. One of the obvious advantages of using Routes is that they’re easy to create using the
oc expose command.

Note
Rancher’s and OpenShift’s concepts of a project have nothing in common.

Note
In OpenShift, creating an Ingress resource leads to the creation of a corresponding Route in the same

- acend gmbh

106 / 108

https://access.redhat.com/support/policy/updates/openshift/
https://rancher.com/docs/rancher/v2.x/en/cluster-admin/projects-and-namespaces/#about-projects
https://docs.openshift.com/container-platform/latest/rest_api/project_apis/project-apis-index.html
https://docs.openshift.com/container-platform/latest/applications/projects/configuring-project-creation.html#disabling-project-self-provisioning_configuring-project-creation
https://docs.openshift.com/container-platform/3.10/release_notes/ocp_3_10_release_notes.html#ocp-310-support-for-kubernetes-ingress-objects

Task 14.1: Create an Ingress resource
In 5. Scaling you exposed the example-web-app application via Route using the oc expose command.

Expose the application using an Ingress resource. It’s best to not delete the existing Route, so you can
compare them. Bear in mind that you need to use another hostname in that case.

Solution
Your Ingress resource should look similar to this:

Deployments and DeploymentConfigs
OpenShift introduced the concept of DeploymentConfigs which later got introduced to upstream Kubernetes
as Deployments. The reason they don’t have the same name is because Deployments lack some features
that DeploymentConfigs offer. It’s advisable however to use Deployments wherever possible as they’re
compatible with other Kubernetes distributions where DeploymentConfigs are only supported on OpenShift.

The OpenShift documentation offers a detailed explanation of the differences. The features additionally
offered by DeploymentConfigs can be summarized as automation features to e.g. automatically trigger a
new deployment when the upstream image is updated.

ImageStreams
One of the reasons Kubernetes Deployments cannot support the missing automation features is because in
OpenShift, they are based on other resource types like the ImageStream. Kubernetes has not yet adopted a
similar resource type.

ImageStreams are references to an actual image in an image registry. They can be configured to
periodically check if the referenced image has been updated in order to trigger builds or deployments. More
details can be found in OpenShift’s documentation .

BuildConfigs and Builds

Namespace.

Note
Make use of the Kubernetes documentation about Ingress resources.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: example-web-app
spec:
 rules:
 - host: <hostname>
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: example-web-app
 port:
 number: 5000

- acend gmbh

107 / 108

https://docs.openshift.com/container-platform/latest/applications/deployments/what-deployments-are.html
https://docs.openshift.com/container-platform/latest/openshift_images/images-understand.html#images-imagestream-use_images-understand

You already encountered these resource types in 3. Deploying a container image. BuildConfigs and Builds
make it possible to build a container image on OpenShift instead of relying on an external tool.

- acend gmbh

108 / 108

	Setup
	1. Web terminal
	2. Local usage
	3. Other ways to work with OpenShift

	Labs
	1. Introduction
	2. First steps
	3. Deploying a container image
	4. Exposing a service
	5. Scaling
	6. Troubleshooting
	7. Attaching a database
	8. Persistent storage
	9. Additional concepts
	10. Security
	11. Deployment strategies
	12. Helm
	13. Kustomize
	14. Kubernetes and OpenShift differences

